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FOREWORD

The Image Understanding Program is planned to be a five year research effort
to develop the technology required for automatic and semiautomatic interpretation and
analysis of military photographs and related images. This program , now in its second
year of Defense Advanced Research Projects Agency (DARPA) sponsorship , was initially
funded in 1976.

This document contains papers submitted by various research personnel working
on projects in the Image Understanding Program . These papers were presented on April
20 , 1977 at the fifth Image Understanding Workshop held in Minneapolis , Minnesota. The
Workshop was hosted by Dr. T. F. Hueter , Vice President for Corporate Technology,
Honeywell , Inc.

The current DARPA program includes four University/Industrial teams:

University of Southern California — Hughes Research Laboratories

University of Maryland — Westinghouse, Inc.

Purdue University - Honeywell, Inc.

Carnegie-Mellon University - Control Data Corporation

There are also five individual DARPA-sponsored research efforts included :

Massachusetts Institute of Technology

Stanford University

University of Rochester

Stanford Research Institute
Honeywell, Inc.

The purpose of the workshop was to enable various program researchers to
present interesting technical accomplishments achieved during the past six months.
The status of each of the diverse projects including future research plans and goals
were also agenda objectives. In this way, by stimulating cross-fertilization dis-
cussions , it was hoped to assist community-wide understanding of the individual
research efforts. Since the participants included personnel from the military research
and development community , as well as representatives from interested user organi-
zations, the workshop served as a means to provide a ‘dialogue~ between researcher and
user. Such information exchange is considered a must by DARPA management in order to

— 
facilitate technology transfers. - ~~~~~~~

.. - - -- -

The workshop was organized into four sessions which ranged from the broadest
applications down to more specific investigations. Each principal investigator pre-
sented his program for review. A general discussion period open to all participants
was conducted following the presentations.

The Image Understanding Program is under the d’rection of Major David L.
Carlstrom, USAF , of the Defense Advanced Research Projects Agency (DARPA), Informa tion
Processing Techniques Office. The cover design of this document was taken from a
diagram used by Major Carlstrom to explain the hierarchial processing required to
convert basic image data into real-time information for decisionmakers. Major
Carlstrom has repeat~~ IV reminded researchers that this end result must be clearlykept in mind as Finite improvements are achieved at each level along the way .
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The conference organizer wishes to thank Dr. William A. Sander of the Army
Research Office; LTC George W. McI(emie of the Air Force Office of Scientific Research ;Mr. John S. Denhe of the U. S. Army Night Vision Laboratory; and Dr. John J. Knab of
the Air Force Avionics Laboratory for acting as moderators for the technical sessions.Also, Mr. Rod Larson and Ms. Beverley Jensen of Honeywell, Inc. were most instrumental
in the conduct of the workshop by securing facilities, making arrangements and
generally assisting in the coordination necessary to provide for the needs of the I -participants. Typing support and collection and arrangements of papers was accomplished
by Ms. Gloria Wilkie of Science Applications, Inc.

Lee S. Baumann
Science Applications, Inc.
Workshop Organizer

I

4

_ _  _ _  —~~~~~~~ ~~--~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



AUTHOR INDEX

Page No. N ame Page No.
ANDREWS , H.C. 44—54, 109—113 MARR , D. 15—20
ARNOLD, R.D. 1-4 MILGRAM , D.L. 58-64
BARROW , H.G. 21-27, 105-108 MITCHELL, O.R. 71-77
BI~~’ORD , T.O. - 1-4 NEVATIA , R. 55-57
BLUZER , N. 87-88 NUDD , G.R. 89-94
BOLLES , R.C. 21-27 PANDA , D.P. 65-70
BROWN , C. 5-11 POGGIO, T. 15-20
CARLTON , S.G. 71—77 PRICE, K. 28-31, 55—57
COLEMAN , G. 44-54 RASHID , R. 83-86
FELDMAN , J. 83—86 , 103—104 REDDY, R. 12—14 , 28— 31, 95
FU , K.S. 101-102 ROSENFELD , A. 98-100
GENNERY , D.B. 1—4 RUBIN , s. 12-14
GLISH , B. 32-37 SWANLUND , G. 32-37
HUAN G, T.S. 101-102 TENENBAUM , J.M. 21-27
KENG , J. 39-43 TOUCHBERRY , R. 78-82
KOBER , W. 32-37 WILLETT, T. 87-88
LANTZ , K. 5-11 WOLF , H.C. 21-27
LARSON, R. 78— 82, 96—97 

~~~~~~~~~~~~~~~~ 

. 

~~~~~-- ---- -- - —~~~~~- - -- —— ~~
-- - - - --

~~~~~~ 
--- - --—

~~~~~~~~
--- A



1

SPATIAL UNDERSTANDING

R.D. Arnold
T.0. Binford
D.B . Gennery

Artificial Intelligence Laboratory , Computer Science Department
Stanford University, Stanfo rd , California 94305

Abstract

We present recent progress in stereo photointer— most cases, enough guidance information and know—
pretation applied to vehicle location and build— ledge about the scene is available to cut the

• tog location: segmentation of vehicles from computation time by large factors from those
ground , and preliminary description of their quoted below.
shape preliminary to identification of vehicles
in aerial images of suburban scenes; segments— The system first finds a small sample of interest—
tion of vehicles from ground in ground level lag feature3 in one image and matches them with
images; preliminary results in segmentation and their corresponding view in the other image. The
description of buildings in aerial images ; a flew Observer Model can be found from 5 features which
technique for feature—based stereo in which edge are non—degenerate. Typically . 10 features are
fragments are linked into smooth curves in 3d; used because some feature matches may be wrong and
deoth mapping based on area correlation, some sets of features may be degenerate. Interest—

ing features are small areas which can be local-
ized in two dimensions without an Observer Model.

Introduction Those are features which are not invariant along
any direction. Lines are not localizable, but

Our goal has been to develop techniques for passive corners are.
ranging in P1 and guidance using sequences of

• images from a moving observer. We have two other A 2d search is necessary to match features without
goals: first, to describe and identify objects an Observer Model. An important contribution is
seen from a variety of viewpoints, in this case the binary search correlation algorithm which
aerial and ground views ; second , to use edge finds matches anywhere in the image in only 50
features in order to exp loit the ARPA “smart msec. It uses a coarse—to—fine binary search
sensor” technology , and to increase the accuracy strategy : it first searches on a coarse version
with which measurements can be made, of the image (l6x16); then it searches in higher

resolution images (32x32 , 64x64, etc), each time
Our program is called Spatial Understanding. The in the neighbo rhood of the best match in the
aim of the program is to build descriptions which previous image. It has an error rate of about 10%
are segmented into surfaces and volumes, and to false matches in an extensive set of images. It
match segmented spatial descriptions . In terms of encounters fewer ambiguities than brute force
interactive aids to photointerpretation , the matching since not only must the feature match,
importance of this approach is that it makes use of but the surrounding context must match also.
stereo, and that its representations are intui-
tively natural to humans. Natural representations The system selects a larger sample of interesting
are essential to our next phase of interactive points to find corresponding views in the two
programming of P1 tasks, images. It then finds a ground surface (quadratic)

for small portions of the scene. The ground
At the last image Understanding workshop, we surface finder maximizes a function which favors
presented results on finding the ground surface in as many points as possible near the surface and as
aerial images. We summarize those results as an few points as possible below the ground surface.
introduction to the current research. The system
starts with a sequence of images. The system f i rs t  Approximate timings for these modules on a PDP
orients itself by finding an Observer Model for the EL/b are :
sequence of images. It uses the Observer Model to: Interest operator 75 mmcc
limit search in subsequent ranging; calculate range Binary search correlator 50 * Nl macc
to image points; to guide i tself toward a target , Observer Model solver 250 * Ni mmcc
or away from obstacles, where Ni is the nuwber of points in the sample

used to determine the Observer Model (typically
Building the observer Model takes at least half the 10).
total time in finding the ground surface. The Ti— 75 msec + 300 * Ni msec (typically 3.1 eec)
Observer Model can be calculated from accurate where Ti is the time required to determine the
guidance information , thus eliminating half the Observer Model. Solution of the Observer Model
computation. Mty guidance information helps . In
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requires 80% of the computation time required for mapper accepts matches only if they satisfy
obtaining the Observer Model. It is expected that reasonable probability of match , and if a neighbor
the solution can be speeded up a factor of 5 matches at similar disparity . The mapping
(although it has been carefully constructed with routine uses both the Observer Model and contin—
concern for efficiency). That would make Ti uity of depth surfaces to limit search . It
typically 1.1 sec. searches initially near neighboring matches ; when

necessary , it carries out a full search along the
Timings for the ground surface finding are : ray from minimum distance to infinity .

Range Sample 50 * N2 macc
Ground Surface solver 5 * N2 msec Car Location

where N2 is the number of range points in the
sample , typically 50. We have developed a new technique for edge match— -

12— 55 * N2 macc (typically 2.7 sec) ing and curve linking in stereo. Ranging based on
where T2 is the time required to determine the matching edge features increases the accuracy of
ground surface model , given the Observer Model, determining boundaries of objects by a factor of

about 20. This makes it possible to use fairly
Finding the ground surface model can be speeded up. accurate estimates of object size. Edges also
The Observer Model makes it economical to make a provide additional information about surface mark—
range map. A point in one view corresponds to a ings which are not available in stereo based on
ray in space , which corresponds to a line in the area correlation.
other view. Nearby points usually have approxi-
mately the same disparity. Thus, search can be The technique has been used for segmentation and
limited to a small interval on a Line . We have description of vehicles in aerial images. Figure
estimated that about 2 macc per point are necessary 3 shows part of an image from a pair of a parking
for this search, which would make T2 7 * N2 macc lot. Figure 4 shows edges 2 feet or more above
(typically .35 sec). For many missions in P1 or ground level, in a coordinate system with x axis
guidance, enough information will be available from along the stereo baseline . Edges have been
instrumentation or inertial guidance to eliminate linked together and fit with straight lines.
determination of the Observer Model , and to allow Rectangles have been fit to the vehicles , with
frame to frame tracking times less than a second on approximately the right orien tation and size. We
an ordinary computer, We estimate that the expect the sy~tem to identify curs soon.computation time will be approximately twice as
long on a PDP11/45. Edge elements (edgels) are linked into smooth

curves in 3d. Not only must they link up in the
Ground surface finding should work for images from image , but they must be continuous in disparity
a variety of sensors and including contrast also. The matching and linking process makes use
reversal. The binary search algorithm used in of the Observer Model and ground surface model
obtaining the range sample for the Observer Model which are already determined. It first transforms
should be successful where depth differences in edgels to a standard stereo system (x’, y ’) wP-h
the scene are small compared to the range the baseline along the x’ axis. Edges in Figure 4
(almost always true in serial images) ana images are shown in the stereo coordinate system. The
are similar (not true for different sensors). disp lay is distorted slightly because of the
Binary search probably will fail at the coarse aspect ratio of the display. Each edgel is put
stage in dissimilar parts of scenes . It is p05 into a cell in an (x’, y’) grid. Each cell is
sible to instead match curves in images, using 8x8 pixels square in (x’, y’); it contains a list
techniques developed here. Curve matching should of edgels in the cell. View 1 is scanned cell by
be effective even in these cases . Alternatively , cell. For each edgel , the routine looks at all
guidance information may be used to obtain the edgels in view 2 with permissible disparities. It
Observer Model in those cases , ignores edgels near the stereo axis (within 25

degrees). It rejects any pairs which are more
Range Mapping than 1 radian apart in angle. The routine could

make use of special knowledge about horizontal
A routine now maps ranges over whole images, using edges to make tigh t limits on angle. That special
area correlation . It has made a dense map of case is useful for vehicles and for buildings . The
ranges in a pair of images of vehicles in a routine also requires that pairs match in contrast
parking lot , taken from near ground level. The (sum of squares of signal) and brightness. It
range map was used as input for the ground plane picks the best match .
finder. Figure 1 shows one of a pair of images.
Figure 2 shows the heights of areas which are at Then the routine makes another pass through the
least two feet above ground level. These areas array. It looks in a l6xl6 pixel area around each
coincide with the two cars in the images, and edgel in view 1. It checks to see whether
heights are reasonably accurate , neighbor edgels are colinear and compatible in

contrast and brightness , and whether they match in
The routine uses a high—resolution correlator to view 2 with consistent disparity . If the re are 2
obtain as much accuracy as possible. The corre— neighbor edgels which link in this way, then the
lator calculates a probability of match , inter— edgeb is accepted. A line i~ fit to the list ofpolates to the best match , and calculates position linked edges.
errors In match . The ground plane finder uses
these estimates of position errors . The range Linked edges are given to the rectangle fir,der. It

~
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finds the maximum of a histogram of edges versus Figure 1
angle module 90 degrees to find the orientation , Ground Level View of Parking Lot
th eta, of the rectangle. It computes transformed
coordinates in a system (u ,v) rotated along theta.
Then it finds clusters in histograms with respect
to u and v separately . It takes all combinations
of clusters to compute the product of all prob-
abilities for that rectangle. The combination
with the max probability ia assumed to be the
answer. It calculates the greatest lower bound in
cases in which the rectangle is not bounded along
one side, and uses default information on length
and width where necessary.

Car Models ____________________________________________

Cars are modeled by planes and boxes. Planes and
edges are nearest to observable. There are
vertical planes and horizontal planes. The box
model of cars consists of two boxes , one on top of
the other. The sizes of the boxes have a relative-
ly small range . The upper box is at an app roxi-
mately constant location from the front of the
lower box. In some cases , this enables distin-
guishing front from rear. The approximate dimen-
sions of the upper box are: height 56” , width 60”
and length 80” . It has a horizontal top and
vertical sides. The lower box has dimensions:
height 36”, width 60” and length 160”.

Buildings

The same techniques are being used to segment
buildings from ground , to model the segmented
objects, and to form building models . We expect
the techniques to work better. Buildings are
larger, they are more planar. We expect to
present preliminary results in description of Figure 2
buildings. Height of Areas 2ft. or More Above Ground Sur

Surface (From Figure 1)

2

2

3
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Figure 3 Figure 4
Aerial View of Parking Lot In Stereo Coordinate System

Left: Linked Edges O—2ff. Above Ground
Right: Linked Edges 3—6ft . Above Ground

Figure 5
Rectangle Fit to Upper Car
In Stereo Co~.rdinate System



— _•,_,____ _ _w ~~~
—

~~~~~~
‘-----

~ ~
— -

~~~~~~~
•

-~~~-
-
~~ - 

- -

5

REPRESENTATION AND USE OF KNOWLEDGE IN A GOAL-DIRECTED VISION SYSTEM

C. Brown and K. Lantz

Computer Science Departmen t
The University of Rochester

~
‘\BSTRACT -. returning to an aerial photo on

different days to perform differ-
A vision system is described which is ent tasks;

geared to: - generating different special-purpose
maps from the same photo.

- extracting information efficiently
at variable level s of detail; For this approach to image analysis , it is

- allowing users to bring to bear important to define a representation that allows
specialized knowledge about stra- extensions to partial mappings which may be
tegies, representations , and known a priori or acquired sequentially. For
techniques ; efficiency, we want a way of defining quantita-

- representing and using general and tively when the query has been satisfied so that
map-derived knowledge in semantic we do not perform unnecessary mappings .
net form;

- providing nonstandard control struc- Queries will initiall y be made by writing
ture , rudimentary automatic programs , but the system will not consist of one
inferencing, and faciTities for or more monolithic programs that rigidly solve
automatic procedure selection. single specialIzed problems. Rather , a central

concern is to devel op the idea of standard repre-
An illustration is provided by current work sentations for comon low- and high-level objects

in ship-finding , so as to facilitate coninunication between proce-
dures . Standard representations , if they can be
found , will expl i cate some primitive constructs
useful in vision , and will make vision program-
ming easier. If in addition the representations

1. INTRODUCTION are machine-interpretable , then the programs can
begin to monitor, reason about , and affect their

• For some time we have been developing a own performance. An important object in the
general vision system. Sections 1, 2, and 3.4.1 system is the procedure . Procedures are often
are condensed from [Ballard, Brown and Feldman], attached to objects (a “how to find it’ procedure,
In which more detail may be found. The system is for instance), and an automatically-Interpretable
structured in three layers. At one end of the description of the actions and characteristics
structure Is a semantic network , the world model ; of procedures may be used to choose automaticall y
It contains idealized prototypes of structures the most reliable , cheap, or accurate procedure
from low level (such as edges) to high level (e.g. for a given job. Also , such descriptions allow
complex assembl ages of world objects). In the for Incremental , modular extensions to the power
middle we have a sketchmap. This data structure of the system without any reprogranring (see
is synthesized during image analysis and provides Section 3.4.1).
a mapping between the model and the image. At
the other end is the image data structure , con-
sisting of the original Image and various pro- 2. SOME GENERA L ASPECTS OF THE SYSTEM
cessed versions of it.

2.1. MODEL STRUCTURES
The concept of a query is central to our ap-

proach to Image analysis. Given a richly descrip- In a query-oriented system, one does not
tive image model , a query In the form of a always want to perform an exhaustive initial
special-purpose progr can be coded in such a way segmentation of the scene into regions , line seg-
as to require mappi ng a minimum of model structure ments, or anything else. Such segmentation may
into the Image. Another aspect of the design is be at a level of detail which Is too coarse or
the retention and use of information gained In too fine to reveal what one wishes to know. Fur-
previous tasks so that mappings may be refined ther , even when segmentation Is data-directed , a
over a succession of queries. Examples mig ht be: uniform algorithm producing a continuum of
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in termediate data structures may be too Inflexible - Constraints between locations can
and (given present understandings) IneffIcIent, propagate knowl edge throughout the

model (see Section 3.4.2). Loca-
We desire to replace mandatory processing tion descriptors can be computed

through many level s of detail by modellIng objects from other location descriptors via
at many useful levels of detail , and using pro- relations , or by union and Inter-
cedures capable of selecting different image section of the described point sets.
resolutions. The supposition is that the purposes A system which applied linear pro-
of the query will stop the analysis at the mini- granining techniques to the problem
mum necessary level of development, of locating regions through con-

stra i nts placed on the ir bounda ries
The model holds several kinds of knowledge was developed in [Taylor).

about the image domain (see Section 3.2). It - Use of locatiop descriptors is geared
includes a relational network of nodes which are to an abandonment of the exhaustive
identifiabl e with (primitive and complex) objects segmentation paradigm wherein every
and concepts in the domain from which the scene region must correspond to some ob-
is taken. The answer to a query is a sketchmap ject. Different location descrip-
consisting of instantlations of model nodes. The tors may refer to disjoint point
model , therefore , contains knowledge in the form sets or may overlap on the image.
of all potential instantiab le descriptions. An and different objects may have
example of this kind of knowledge is the assertion similar location descriptors.

• “docked ships are adjacent to docks.” It is po-
tentially part of the model-image mapping since 2.2. IMAGE AND MAP STRUCTURES
both “ship ” and “dock” could be instantiated with
pointers to regions of the image. The model also In the process of analyzing an image many
contains knowledge not in the form of a mappable intermediate, processed Image data structures
assertion but still useful in mapping, for in- will be generated. We plan to attach a descrip-
stance : “ships are about 6 times as long as wide, tion to each of these structures. This will
and are about 300 feet long. ” facilitate the writing of large processing pro-

cedures in the following ways:
Model nodes are identifiable with concepts

in the scene domain and each has links to other - — entire structures can be passed to
nodes; they have a rich structure (see Section procedures as arguments;
3.3) . Procedures may be attached to nodes to - i ntermed iate resul ts can be stored
allow choice of control regimes, but we do not in a standard way;
envision that the structure will be sel f-activat- - image transfer through computer net-
Ing. works will be facilitated [Maleson

and Rashid].
In the process of synthesizing a model-image

mapping, special-purpose procedures generate and The system uses a version of the Array of
use many kinds of knowledge in the form of image Image Samples format proposed In [Sproull and
data structures, parameters, operators, and Baudelaire], extended to contain information
descriptions of their results . A structuring of from processed and interpreted images as well as
this diverse knowledge is provided by standard stylized , pictorial structures isornorphically
data objects which are used for comunication related to the image, such as topographic maps .
between the var ious knowled ge sou rces an d the
users. A “map ” is a useful entity for tops-down

Image analysis; we take a map to be any data
One example of an important standard object structure which contains information about how

is the location descriptor , which contains what we expect an Image to look. It may have a large
Is known of how to locate an entity . One aspect amount of metric information , as would the topo-
of location description has been called [Bolles] graphic map mentioned above. It may be a finite
a tolerance region. There are many advantages to set of assertions giving purely relational Infor-
having a standard representation for object loca— nation. Maps may thus give only enough Informa-
tions: tion for a specific purpose.

- If such descriptions are data types, For topographic maps , the system will use
their computations can be separated something like an extended GIST format [Leniner],
from the procedures that use them. consisting of point, linear , and area fea tures
If they can be passed as arguments , inverted on feature type, as well as a potential
they provide a certain “consnon for raster Information. Typical ly onl y a small
currency ” between procedures , thus subset of a topographic map is relevant to any
simplifying and modularizing the given Image understanding task. The system may
procedures that use them, need routines for converting (In some directions)

- Location descriptors can represent between the various representations of maps.
approximate locatIons, which is use- Especially useful is conversion of linear fea-
ful for queries unconcerned with tures Into raster data .
exact answers.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~— - -—--- .•- —-
~~~~-- ~~~~

-
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2.3. CONTROL encodes a semantic net representation wherein
the <attribute> (<slot>) links the two entities

The procedures attached to nodes of the model <object> (<node>) and <value> . In this discus-
could be run in the style of active knowledge sion we represent a typical prototype node as
[Freuder] or in any other nonstandard control follows:
regime . These control structures have been used
to achieve knowledge propagation , shifts of at— [ <node-name>
ten ti on , parallel processing, etc. nodetype : <node-type>

isa: <node>
Some control will be overseen by the system son : <node>

(see Section 3.4). However, the system is at <slot—name>1 : <value>
present not coninitted to any particular control ...
regime . We are interested in finding out what <slot-name>n : <value> I
control primitives are the most helpful , but as
yet do not feel strongly enough about any scheme A basic activity of image understanding is
to restrict the user to some system control phi lo- finding individuals and deducing certain of their
sophy. We will be m4king queries at several properties. When this happens , an “individual ”
levels of detail; we will (initially, at least) instance of a prototype node Is created with just
code Into the query strategies for answering the those properties that are relevant to the task
question at the ri ght leve l of detail rather at hand . Suc h “ partial instantiations ” are easy
than expecting the model to provide them. The in LEAP. An indiv idual may be characterized in
model wi l l  be cons idered more as a da ta structure a na tura l way as :
than as a description of control .

a <node> with <slot-name>1 value

3. SPECIFIC ASPECTS OF THE MODEL <slot-name>n = value

3.1. REPRESENTATION Generic properties are found by following the
isa links through the hierarchy of individuals

Our system is partitioned into model , sketch- and prototypes.
map, and image. The image component consists
solely of data--the Image at various magnifica- 3.2. STRUCTURE OF THE MODEL
tions, resolutions, etc. The model and sketch-
map, on the other hand , comprise knowledge about The vision “universe” Is composed of the
the world; the model represents generic know- real world , the image , and abstract entities.
ledge , whereas the sketchina p is a specific in- The world is composed of objects--ships, docks,
stantiation of a subset of the model . We will oceans , roads , posts, etc. At a higF~er levelexpress the con~ent of the model with constructs these can be grouped into area objects (oceans),
from Knowledge Represmntation Language (KRL) shape objects (ships), l inear objects (coast-
[Bobrow and Winograd]. lines), and point objects (bows of ships); at a

lower level the viewer sees particular instan-
In our system the basic object is a 

~~~~ tiations of ships , docks , and coastlines—-i.e.,
A node is a referent for an entity or category in he sees individuals. The image , on the other
the “world” being represented . Nodes have a name hand , is composed of features--lines , edges,
(e.g., “shape object,” “l inear feature,” or points , regions. As with world objects,
“ship ”), type, and a variable number of associated features can be grouped into area , shape , l inear ,
properties , or slots. A generic node is a 

~~~~~~~~~~~ 
and point features, and instantiated to yield

~~p~; an instantiation thereof Is an individual , particular individuals.
A slot Is effectively a (property, value) pair--
for example, the tonnage of a shi p Is 100000 tons, To describe the image and the world , an d to
or its silhouette is given by a point set. Slots correlate the two, it is necessa ry to deal w i th
may contain procedures to be called as circum- abstract entities. One such abstract entity
stances warrant; they can serve the role of “ser- is the location descriptor , which relates loca-
van ts” and “demons” for propagating or acquiring tlons of nodes to coordinate systems, which are
knowledge. themselves abstract entities. Other abstract

entities are points , point sets, l in e segmen ts,
KRL , as formulated by Bobrow and Winograd , coordinate systems, cha i n codes , etc. Such

Is LISP-ish in syntax. In what follows we will entities comprise the third fundamental partition
employ a syntax based on the fact that our system of the vision model ; many of them represent know-
Is written in LEAP [Feldman and Rovnerj. Nodes ledge concerning relationships between the world
are constructed from associations (triples). The and the image . Our basic model structure, then ,
LEAP association appears as in Figure 1.

<attribute> of <object> = <value>

or

<slot> of <node’ <value> 



T
8

Model be a PointObject , and t he wor ld loca tion and
imagelocation are both PointLocatlonDescriptors.

World Object
Area Object ... Shape objects are distinguished by one
Sha pe Object or more of the properties (no t necessar i ly a

Ship complete list) found in the slots of a prototype
ShipOOl ... ShapeObject node:

Linear Object ... [ ShapeObject
Point Object ... nodetype: basic prototype

isa: an Object with
Abstract Entity objecttype Shape

Coordinate System,... worldlocatlon = (the
Locat i on Descr iptor wrldlocn from

Ar ea Loca tion Descr ip tor ... ShapeObject Thi sOne)
Shape Location Descriptor ... imagelocation = (the
Linear Locat ion Descriptor ... imlocn from ShapeObject
‘Point Location Descriptor ... Thi sOne)

Point ... son : OneOf ((a Ship), (a Car),

Image Feature I/all possible shape objects
Area Feature ... itnagelocation : a ShapeLocatlonoescriptor
Shape Fea ture ... wor ld loca tion : a ShapeLoca tionDescr iptor
Linear Feature virtualcoords : a CoordinateSystem

Line f/virtual coordinate system for
LineOOl ... remaining slots

boundary : a DirectedLineSet
Point Feature ... f/outline in virtual coordinates

centrold: a Point
orientation: a Number

I/orientation of “midl ine ” with
Figure 1 respect to an axis

template: a PointArray
I/ silhouette ” in virtual coordinates

3.3. SHIPS: AN EXAMPLE OF NODE SEMANTICS convexity : • a tiumber
aspectratio: a Number

In Figure 1, ShipOOl is an instance of a length : a Number
prototype Ship. Ship, in turn , isa Shape Object, width : a Number 3
which isa Object in the world. Objects are fixed
In place (in bot~ the image and the world) via The description “(the worldlocation from
location descriptors and might appear as follows: ShapeObject ThisOne)” in an Object node ’ s

worldlocatlon slot means that the instantiated
I Object Object will be given the same worldlocation as

nodetype: basic prototype the instantiated ShapeObject without copying
objecttype: OneOf (Point , L inear , Shape, information.

Area}
son : selecton (the objecttype of A prototype Ship is a specialization of

Object ThisOne) into a ShapeObject. It inherits implicitly all pro-
[Point:: a PointObject pertles of a ShapeObject but can possess other
Linear:: a Linearabject distinguishing properties as well--e.g., tonnage ,
Shape:: a ShapeObject bow, and stern. A ship prototype could be
Area:: an AreaObject] defined:

worldlocation : selecton (the objecttype of
Object ThlsOne) into I Ship

[Point:: a PtLocnDescr nodetype: specialization prototype
Linear:: a LlnLocnDescr isa : a ShapeObject
Shape:: a ShLocnDescr shiptype : OneOf {Carrier , Battleship,
Area :: an ArLocnDescr] Cruiser, Dest--oyer,

Imagelocat ion: Tanker , Frel ~iiter}II... similar to worldlocation I tonnage : a Number
name: a String

“(the objecttype from Object ThisOne)” is a bow: a PointObject
description of a slot (objecttype) which resides stern : a LinearObject 3
In a particular (Object) node; here, the (O bject)
node Is ThisOne--i,e ., the same node the descrip- If a ship Is found in the Image , the sketch-
tion is In. Given an instantiatIon of an Object map gets a new node which Is an instance of a
node with objecttype Point , the selection sped - Ship node and which has some subset of a Ship ’ s
fles that the son of the Instantiated object must properties associated with It. This entails

~ 

~~~~~~~~~~~~ . - ~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~ -‘
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creating a new Instance of a ShapeObject and thus [ Feature
an instance of an Object node. Finally, the II.. .simllar to Object )
35,000—ton cruiser “U.S.S. Montl antz” located at
21 36’N , 106 47’E might be represented as follows: [ ShapeFeature

II.. .similar to ShapeObject ]
I ShipOQi

nodetype: individual U LocationDescriptor
isa: a Snip with nodetype: abstract prototype JIsa = Sha peObjectOOl

shiptype = Cruiser U ShapeLocationDescriptor
tonnage 35000 nodetype: specialization prototype
name = “U .S.S. MontLa ntz ” ] isa: a LocationDescriptor

locates: OneOf ((a ShapeObject),
[ ShapeObjectOOl (a ShapeFeature))

nodetype: individual coordsystem : a CoordinateSystem
isa: a ShapeObject with centrold: a PointSet

isa ObjectOOl f/allows for “fuzz iness ”
son ShipOOl orientation : an AngleRange
wor ldloc n = ShLocnDesc rOOl l If. . .d it to
imagelocn = ShLocnDescrOOl2 3 silhouette: a PointSet 3

I ObjectOOl . . . similarly for Point , Linear , and
nodetype: individual AreaLocationDescriptors
isa : an Object with

son = ShapeObjectOOl [ CoordinateSystem
objecttype = Shape ] nodetype: abstract prototype

units: a LengthUnitSpecification
[ ShLocnDescrOOll scale : a NumberRange

nodetype: individual f/length units / system unit
isa : a ShapeLocatlonDescriptor with transforms : SetOf {((aCoordinate Transform)

locates ShapeObjectOOl (a Coordinate System)),
coordsystem = CoordSystemOOll . . . I I
centroid = (21 36’N , 106 47’E) I

U Coordinatelransform
U ShLocnDescrOOl2 //two coord systems and a matrix 3

nodetype : individual
isa: a ShapeLocationDescriptor with I PointSet

locates = ShapeFeatureOOl f/choice of representations ]
coordsystem = CoordSystemOOl2
silhouette = PointSetOO l ] [ Point2D

I/a coord system an d two numbers 3
[ ShapeFeatureOOl

f/similar to ShapeObjectOOl 3
3.4. INNATE PROCED URAL KNOWLEDGE

Prototype nodes such as ShapeObject and Ship
reside in the model , and must be provided by the The system will have some Innate procedural
system developer. Individual nodes such capabilities to augment the assertional and
as ShIpOO1 and ShLocnDescrOOll are gene- pIctorial knowledge of the model . As these capa-
rated by the system in response to a query ; they bilities expand , the system will become more and
reside in the sketchmap. more autonomous. Our imnedlate goals are to

automate the selection and application of pro-
Some further prototype node structure for cedures and some inferencing about object loca-

the example might be: tions.

I PointObject 3.4.1. DESCRIBED PROCEDURES
nodetype: basic prototype
isa : an Object with At the highest (strategic) level , control
If... similar to ShapeObject Is embedded In the form of user-written programs.

son: OneOf C...) However, the system will have a powerful proce-
• I/all point objects dural substructure that should facilitate the

woridlocatlon: a PointLocatlonDescriptor writing of these programs (Figure 2).
imagelocation : A PolntLocatlonDescriptor
f/distinguIshing slots for point cbjects ] An executive procedure may be attached to

a model node. The executive takes as partial
I LinearObject Input an Incompletely-specified data object and

If.. .sl mi lar to ShapeObject and returns a more-completely specified one. As
PointObject ] previously described , data objects of a given

- - ~~~~~~~~~~~ —• -
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type have a standard form throughout the system. 3.4.2. INFERENCES ABOUT LOCATIONS
Thus one deals with executives at the level of
the “operations” of KRL , i.e., what Is to be done. We expect our model occasionally to Include
The executives are responsible for how to do It; naps which are more or less accurate metrical
they must select and run procedures. To make data structures. Such a map can be used to pro-
these dec i s i ons , the executives have access to duce model structure such as:
descriptions of available resources, the des ired
accuracy or inuned iacy of the result , and the PacificOcean isa ‘~Area Object>;present state of the model , sketchmap , and image OaklandDocks isa <Area Object> ;
structures.

Here an area object has slots for such properties
as a boundary, an area , etc.

image sketchmap I I world model I
data I I I I The model will also have assertions such
structurej L ~ I as:

node DockedShlps are ADJACENT and
I I I PARA LLEL to Docks or Doc kedShip s;

procedure I I Ships are IN Oceans;
description J, J, Ship isa <Shape Object>;

____________ executive To find docked ships using the above infor-
—)I procedure mation , one is invited to search for a particular

- I shape in the ocean , parallel to docks at some
mapping distance from them related to the width of a ship.
procedure We would like to give the system the capability

of deriving this for itself, and thus being capa-
ble of intelligently instructing a ship—finder

Figure 2 as to location and orientation of possible ships.
We are developing the idea of putting constraints
on an object’s location via Its location descri p-

The executives must also be able to find out tor. The constraints are expressed in terms of
about the characteristics of procedures they are objects whose locations may be known through
to use. For use by executives, the world-image maps , such as docks , or objects which may become
mapping procedures (and others) must have associ- known during image analysis , such as ships.

• ated descriptions containing :
Geometric interpretation of constraint words

- the slots in the data object which such as IN and ADJACENT Involves the construction
must be filled for the procedure to of new location descriptors from old; Intersec-
run; tlon of area or boundaries is useful , as is the

- the slots the procedure can fill in; construction of parallel lines , bounding boxes,
— the cost of the procedure; etc. Such construction of new or improved loca-
— the a priori reliability of the tion descriptors will not be sel f-actuating, but

procedure. the facility will be available to propagate and
deduce knowledge about location whenever the time

With this scheme, seems propitious. This sort of constraint satis-
faction to reduce the range of parameters in a

- executives can be written without search seems useful in a variety of contexts,
considering the impl ementation and it is being implemented as a built -In facility
details of mapping procedures in capable of using a variety of constraints on a
great depth , variety of types of objects.

- mapping procedures need not themsel ves
determine an appropriate context for
their application ,

- descriptions allow a choice between
method s (If several are available)
based on capability , resource re-
qu i rements , and a priori reliability,

- executives can select alternative
procedures In the event of mapping
procedure fa i lure ,

- If the ma ppi ng procedu res can produce
reliable a priori estimates of their
success , the analytical results of
[Bolles , Taylor] could be extended
to select the procedure which most
economically produces sufficiently
precise answers. 

~- -- .•- - -—-— -__-• -•~-—- •—. —---— ___L.______ - - -— -•~~~~ -•-— -- ~~~~~~~--— -~~~ - .- ~~-•-— — — --
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The Locus Model of Search
and its Use in Image Interpretation

Steven M. Rubin & Raj Reddy

Department of Coniputer Science
Carnegie-Mellon University, Pit~abui’gh, Pa. 15213

March 26, 1977

Introduction the wor ld model. By iteratively redefining higher level
structures in terms of simpler objects one can generate a

The central problem in image understanding is the hierarchical network (Or possibly a relational semantic
representation and use of all the available sources of network). The particu lar knowledge representation
knowledge in the interpretation and description of an image. paradigm we have adopted in Locus is to attempt to
The problem of representation is complicated by the represent all images that are admissible by the world model
diversity of sources of knowledge. Converting knowledge in terms of a graph structure whose nodes are Primitive
into effective algorithms in the presence of error and Picture Elements (PPEs). A PPE is chosen so that all pixels
uncertainty further complicates the issue. In this paper we belonging to a given PPE class share the same properties in
presen t a specific framework for representation and use of the feature space (Or signal space). Thus a PPE might
knowledge which appears to be both sufficient and effecient sometimes represent an entire object as in the case of sky,
f or a wide variety of image interpretation tasks. river , or road, or represent a sma ll subpart of an object

such as a segment with similar textural properties. We
The framework for image interpretation presented therefore assume the existence of a set of PPEs which can

here is based on the Locus model successfully used in be used to compose any image that is admissible by the
speec h understanding research (Lowerro and Reddy, 1977). world model, Further we assume that most , if not all, of the
The Locus model is a non-backtracking, non-iterative , cons traints about object structure , size, shape, location, and
deterministic search technique in which a beam of near-miss orientation are mipressibtts in terms ot the graph structure
alternatives around the best path are extended to determine containing only the PPEs. It is obvious that this type of
the near-optimal description of the image. knowledge representation is likely to be expensive in terms

of space for all except the most trivial problems but it
In the following sections we will outline the structure appears to be what is needed for an efficient solution.

of the model and discuss the relationship of the present Baker (1974) and Lowerre (1976) show how different types
approach to earlier attempts at image interpretation. A of knowledge and constraints can be combined into a single
complete version of this paper , including a detailed example graph structure.
has been submitted to IJCAI-77 and can be obtained by

• writing to the authors. A detailed description of the model The second requirement of the Locus model is the
as applied to image interpre tation task will be given in Rubin availability of a signal-to-symbol transformation technique

— ( 1977). A more complete discussion of the strengths and by means of which one can estimate the probability that a
limitations of the model and its relationship to the other given PPE is present at (or around) a pixel location. This
approaches to knowledge representation and searc h are basically requires the availability of a pattern template for
given in Recldy (1977). each PPE and a distance metric for matching the unknown

signal with the PPE templates.
- The Locus Model In the absence of any constraints , the optimal

assignment of PPEs to pixels can be obtained by selecting
The basic premise underlying the Locus model Is that the best PPE label In each pixel neighborhood. However,

the problem of image interpretation can be viewed as a given the semantic , syntactic , structural , and segmental
problem of searc h, and that given a specific knowledge properties of scenes that are acceptable within a micro-
representation paradigm and a specific signal-to-symbol world model, one wishes to choose that assignment of PPE5
transformation paradi gm a highly efficien t search can be to pixels that is both globally optimal and consistent with
used to obtain a globally optimal solution satisfying alt the the world model.
cons traints of the world model.

Given a PPE graph structure representation of the
The principal requirement of the Locus model is in the world model and a signal-to-symbol transformation

area of knowledge representation. Most approaches to technique, t he problem of interpreting an unknown image
image recogni tion assume the existence (and availability) of can be viewed as finding the optimal path through the
a world model in terms of some internal symbolic graph, i.e., finding a sequence of PPEs which best describe
description . The world model usually consists of knowledge each of the pixel neighborhoods of the unknown Image,
which defines the structure and relationship among objects subject to constraints defined by the knowledge sources
that can occur in all the scenes that are Interpretable by represen ted by the graph.

- - - - — -— - —,-- .. - -  — -
~~~ ~~
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Before we can clef ins the search strategy for finding all of the near-miss alternatives removes the need for
the optimal path we need to define the term g~~ backtracking , end thus removes the problem of whether to
Drobabiiity in a PPE network. probability is defined search by depth or breadth.
incrementall y in ter ms of the nodes it traverses and uses
three pieces of information to calculate a probability: the
statis tical match of the signal to the symbol; the Dl8cussion
probabilities of previous network nodes; and the transition
probabilities of arriving from those previous network nodes. The model presented in this paper has been used to
Formally: interpret Ohlander’s city scone, demonstrating the initial

validity and usefulness of the mode). We plan to use the
A, x AV FRAGE [MAX 

~~ j+~l(d) ~ Tk,i,d)) (1) model to interpret arbitrary views of downtown Pittsburgh
‘ ‘ ci k (a 3—U world), and different satellite views of the

Washinglon, D.C. area (a 2-0 world). Representation of the
where P, is t he probability of being in network state i at knowledge about 3-D and 2-0 world models in terms PPE
position f of the sensed data; A~ is the statistical match of graph structure requires the development of several
the PPE symhc represented b~,’ sta te i to the signal at preprocessing programs (the PPE graph for Ohlander ’s city
position j; ~Hd) is the state adjacency function which offse ts scene was generated manually). In this section we will
the current state (j) to the previous state (j +s~(d)) in discuss the relationship of this mode) to other approaches in
direc tion ci; and Tk i d is the transi tion probability of image recognition research, and our present views of the
traveling from state k to state i in direction d. For image strengths and limitations of this approach.
processing, the position (j) is an (x, y) vector. Note that the
maximum k iii the above equation is saved as the best The graph structure representation proposed here is
previous state. This is how each node identifies the best a natural outgrowth of work in languages (Aho and UNman,
path to take during the back-trace. Note also that the 1972) and syntax directed patlern recognition (Narasimhan,
probability values are not needed during the back-trace: 1966; Clowes, 1969; and Fu, 1976). The approach
they accumulate on the forward pass only. The back- presented in this paper principally differs from the above in
pointers are calculated on the forward pass using the how the network representation is to be used. It rejects
probability inf ormation , so they reflect all node trsnsit~ons the notion that image recognition is best viewed as a
to that point. The back-trace uses only the best previous problem in parsing. Given the error and uncertainty
node for each state as it quickly steps through the network associated with the decisions, the problem tends to be not
and selects a path . No search is performed in this pass: it 15 one of deciding whothor a given pattern is parsablo but
pure look—up, rather one of search, i.e., deciding which- of the many

acceptable alterna tive parses represents the optimal choice.
Finding the optimal path through the graph is a

classical search problem in Artificial Intelligence with many The view that the problem of image recognition is one
possible alternative search strategies (Nilsson, 1971). in of constraint sa list ying search h~s been gaining increasing
this paper we propose ansi use yet another search strategy acceptance (Waltz, 1975; Tannenhaum and Barrow, 1976;
called Locus which appears to be particularly effective in Hummel, Zucker and Rosenfeld, 1976). This paper also
percep tual problem solving. Locus is a beam-search subscribes to this viewpoint and differs mainly from the
heurictic in which all except a beam of near-miss other efforts in the representation of constraint; and the
alterna tives around the best path are pruned from the method of search.
search tree at each pixel (or segmental) decision point, thus
containing the exponential growth without requiring The realiization that one needs to introduce some
backtracking and non-deterministic search, measure of the degree of uncertainty into the interpretation

• process is reflected in the papers by Fischler and Elschlager
The Locus search proceeds as follows: 1) a forward (1973), Feldman and Yakimovsky (1975), and the probablistic

pass calculates path probabilities and Inter-node relaxa tion methods Under development at SRI and Maryland.
connections, arid 2) a back-trace uses the inter-node The method proposed here is able to handle search in the
connections to determine the components of the optimal presence of error ansi uncertainty in a natural and
network path. As the fo rward pass search progresses straightforward manner provided all knowledge and
through the network , unpromising alternatives are pruned constraints are represented in terms of a PPE graph
end the interconnections along the beam are saved until the structure.
end of the network is reached. At this point, a back- trace
of the connections is made to select a path through the Constraint satisfying search in the presence of
network. Note that this path is expected to lie in the beam uncertaint y is also a central problem in other areas of Al, In
that was carved out by the forward pass. By delaying the par ticular in speech understanding systems research.
decision making process until all of the network nodes have Several techniques developed for use in the speech area
been exarninoct, Locus obtains the globally optimal path such as represent ation of knowledge sources as cooperating
through the network. This is because the calculation of a Independent processes (Reddy et at, 1973; Lesser et ii.,
node’s likelihood hinges on all previous nodes that led up to 1975; Erman et at., 1977), island driven search (Erman et •l.,
it. Thus, during the hack-trace , each node decision is 1977; Woods et al.1 1977) , and network representations of
guaranteed against degeneration because it’s likelihood is knowled ge (Baker , 1975; Lowerre, 1976) also appear to be
supported by all nodes before it. This means that the relevant to other knowledge based systems research,
selection of an object label in one corner of the scene can including vision. The Locus model presented hero was first
affect the labeling in the opposite corner. Consideration of developed for use in the Harpy connected speech

____ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Cooperative Computation of Stereo Disparity

D. Ma rr and T. Pogglo

The Art if icial Inlelll gence Laboratory, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, Mass 02139, U. S. A.

Abstract processing (12). For th is reason -- and also as a case-in-point --
The extraction of stereo disparity information from two it seems interesting to describe a cooperative algorithm for this

ima ges depends upon establishmg a corres pondence between computation.
them. This article analyzes . he nature of the correspondence In this article , we s hall (a) analyse the computational
com putation , and deri ves a coo perative algorithm that structu re of the stereo -dis parity problem , stating the goal of the
implements it. We show that this algorithm successfull y extracts computat ion and charac ter is ing the associated local constraints;
Infor mat ion from random-dot stereograms, and Its implicat ions (b) describe a coo perative algorith m that imp lements th is
for the psychop hysics and netirophysiology of the visual system com putation ; and (c) exhibit its performance on random-dot
are briefl y dIscussed . ster rogr ams . Althou gh the problem addressed here Is not

dire ctly related to the quest ion of how the brain ext racts
dispari ty information , we shall briefly mention some questions

Introduction and Imphcatiorn for psych op hysics and neurophysiology.
Perhaps one of the most st riking d ifferences between a

brain and toda y’s com put ers is the amount of wi ring. In a
dig ita l computer , the ratio of con nexion s to components is about
t hree, whereas for t he mammalian cortex it lies between 10 and
10,000 (I).

Although this fact points to a clear structural difference
between the two, It is important to realise that this distinction is
not fundamental to the nature of the information proce ssing
t hat each accom p lishes, merel y to the partIculars of how it does
it. In Chomsk y ’s terms (2), It affects theories of performance
but not theories of com pet ence , because t he nature of a i

t 1com putation that is carried out by a machine or a nervous ‘ i i
system depends only on the problem to be solved , not on the I

avai lable hardware (3). Nevertheless one can expect a nervous
system and a di gita l computer to use different types of 1 i

algorit hm , even when per forming the same underlying Icomputation. Algorithms with a parallel Structure , requiring i i  —

man y simul taneou s local opeI’ations on lar ge data arrays , are
expensive for today ’s computars but probabl y well -suite d to the
highly interactive organization of nervous systems.

Th~ class of parallel algorithms Includes an interesting and
not precise ly definable subcla ss which we ma y call cooperative
algoruh”i s (3). Such algori thm s operate on many “ input ”
elements and reach a global organ isat lon via local , interactive
constraints. The term coo ye*atlve ” refers to t he way in which
local operat ions appear to coop erate in formin g global order in I. There is ambiguity In the correspondence between the two
a well-regulated manner. Cooperative phenomena are well- retinal projecti ons . In this figure, each of the four poinis in
known in ph ysics (4, 5). and it has recentl y been proposed that one eye’s view could match any of the four projections in the
they may pla y an important role In biological systems as well (4, other eye’s view. Of the IS possible matchings only four are
0, 7, 8, 9, 10). One of the earliest suggestions along these tines is correct (filled circles), while the remaining 12 are “ fa lse targets ”
due to Julesz (II), w ho maintains that stereosco pic fusion is a (open circles). It Is assumed here that the targets (filled squares)
cooperative process. His spring and dipoles model represe nts a correspond to “matchable ” descriptive elements obtained from
suggest ive metaphor for th is idea. Besides its biological the left and right images. Without further constraints based on
relevance , the extract ion of ster eoscop ic Information is an global considerations, such amb iguities cannot be resolved.
important and yet unsolved problem in v isual Information Redrawn after Julesz (ref . 12 fIgure 4.5-0.

_______ - _________ —-



1.6

Computational Structure of the Stereo - Is composed of boundaries that are discontinuous in depth.
disparity Problem It Is imp ortant to stress that in real life . RI cannot be

Because of the way our eyes are positioned and controlled, app lied simp ly to grey-level points in an Image. The simp lest
our bra ins usu a lly receive similar images of a scene taken from coun ter-examp le is that of a goldfish swimming in a bowl,
two nearby points at the same horizontal level. If two objects because many points in the image receive contributions from
are separated in depth from the viewer , the relative position s of t he bowl and from the goldfish . Here, and in general, a grey-
t heir images will differ in the two eyes. Our brains are capable level point is in only imp licit corres pondence with a physica l
of measuring this dis parity , and using it t,~ estimate depth. location , and it is t herefore impossible to ensure that grey -level

Three steps are involved in measurin g stereo disparity : points in the two images corr espond to exact ly the same physical
(SI) a particular location on a surface In t he scene must be position. Sharp changes in intensity are usuall y due eIther to
selected from one image ; (32) that same location must be the go ldf ish , or to t he bowl , or to a ref lexion , and t herefore
identified in t he other image, and ($3) t he dis parity in the two define a sing le physical position precisel y.
corres ponding image points must be measured .

If one could identify a location beyond doubt in the two
images , for exam ple by Illuminating it with a spot of light , ste ps a 

~~~ tSI and 52 could be avoided and the problem would be easy. In
practise one cannot do this (see fi gure I), and t he difficult part
of t he com putation is solving the correspondence problem.
Julesz found that we are able to inter pret random -dot ______

stereograms, w hich are ster eo pairs that consist of random dot s _______

w hen viewed monocularl y, but w hich fuse when viewed ______

stereoscopicalty to yield patter ns separated in depth. This mig ht
be thoug ht surprisin g beca%ise when one tries to set up a 

______

corres pondence between two arra ys of random dots , fa lse targets
arise in profusion (see f igure I). Yet we are able to determine 

______

the correct corres pondence. ~~e need no other cues.
In order to formulate the correspondence computation

precisely, we have to examine Its basis in the physical world. Lx
Two constraints of impor tanr.e may be identified (13): (CI) A
given point on a physical surface has a unique position In space b Lx coflStaflt C Lx constant
at any one time; (C2) Matte r is cohesive , it is separat ed into ,
objects, and t he surfaces of objects are generall y smoot h
com pared with their distance from the viewer. 

— +
These constraints app ly io location s on a physical surface. — 

,~~~— - -. 
,..

~.- —

Therefore when we translate them Into conditions on a ~computation we must ensur c that the items to which they app ly 3 / +

there are in (I-I) correspondence with well-defined locations on a ‘~~ 
,
‘

physical surface. To do this one must use surface markings . —

norma l surface d iscont inuities . s hadows etc., whic h in turn
means using predicates that correspond to changes in int ensity. 2. Figu re 2a shows the exp licit structure of the two rules Ri and
One solution is to obtain a primitive description (like the R2 for t he case of a one-dimensional image , and it also
primal ske t ch (15)) of the intensity changes present in each represents the structure of ~ networ k for imp lementin g the
image , and t hen to match these descriptions. Line and edge al gorithm described by eqI~atIo n 2. Solid lines represent
segments , blobs , termination points , and to kens obtained from “ inhibitory ” Interactions , and dotted lines represent “excitatory ”
t hese by grouping, usuall y correspond to items that have a ones. 2b gives the local structure at each ni- e of the network
physica l ex istence on a surface. 2a. This algorithm may be extended to two -dimensional

The stereo problem m iy thus be reduced to that of images , in whic h case each node In the corresponding network
matching two primitive descriptions, one from each eye. One has the local structu re shown in 2c. Such a network was used to
can think of the elements of these descriptions as carrying only solve the stereograms exhibitel In figures ~ - 6.
position information , like the black squares in a random-dot
stereogram . althoug h In practise there will exist rules about
whic h matches between descri pti ve elements are possible , and A Cooperative Algor ithm
which are not . The two physical constraints Cl and C2 can By constructing an exp licit representation of the two rules,
now be translated into two ru les for how the left and right we can derive a coo perative algorithm for the com putation
descri ption s are combined: Figure 2a exhibits their geometry in the simp le case of a one-
(RI) Uniqueness. Each item from each image may be assi gned dimensional image. Lx and Ly represent the positions of
at most one dis parity value. This condition relies on the descriptive elements on the left and right Images. The thick
assumption that an item corresponds to something that has a vertical and horizontal lines represent lines of sight from the
unique physical position left and right eyes , and the ir Intersection points correspond to
(R2) ConUnu~:y. Disparity v ;, ries smoothly a lmost everywhere , possible disparity values. The dotted diagonal lines connect
This condition is a consequence of the cohesiveness of matter , points of constant disparity.
and it states t hat only a small fraction of the area of an image The uniqueness rule RI states that only one disparity value

hi. - -.--- - -—---—- .- — -— .- S -_~~~~~~~~~~~;- -- ~~~~~~~~~~
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ma y be assigned to each descri ptive element. If we now think
of the li nes in figure 2a as a network , with a node at each
intersection, this means that only one node may be twitched on
along each horizontal or vert li a l line.

The continuity rule R2 states that dis parity va lues vary
smoothly almost everywhere. That is, solutions tend to spread
along the dotted diagonals.

If we now place a “cell’ at each node (figure 2b), and
connect it so that it inhibits cells along the thick lines in the
figure. and excites cells along the dotted lines, then provided
the parameters are appropriate the stable states of such a
network will be precisel y those in whic h the two rules are
obeyed. It remains onl y to s how that such a network will
conver ge to a stable state , and we were able to carry out a - ..

combinatorial anal ysis (as in i’efs. 9 & 15) which established its
conver gence for random-dot ster eograms (16).

This idea may be extended to two-dimensional Images
sim p ly by making the loca l excitatory neig hbourhood two-
dimensional. The structure of each node in the network for
two-dimensional images is shown in figure 2c. , ~~~~ ‘ ,.

A simple form of the resulting algorithm (3) is given by
the following set of diff:renc: equations: 

. 
~
.

c’”,~ ” ~, 
‘-‘ ç ,:~~,. — ,V C ,:~~~* f ,~~ (2)

where r:;;e:ents the state of the node or cell at position

(x. y) with disparity d at ite ’atlon is, Z is the linear operator
that embeds the local constraints (S and 0 are the circular and
t hick line neighborhoods of the cell xyd in figure 2c), and i is
the “inhibition” constant. e is a sigmoid function wit h range [0.
I]. The state C of tlje corresponding node at time (n.I) is
t hus determined bça nonlinear operator on the output of a
linear transformation of the s:ates of neighbouring cells at time
Si.

The desired final state of the com putation is clearly a 3. This and the fol low ing f igures thow the results of app lying
fixed point of this algo rithm , and moreover an y state that is the al gorithm def ined b y -z qua ti on 2 to two random-dot
Inconsistent with the two rules is not a stable fixed point. Our stereograms. The initial statc of the network C is defined by
combinatorial analysis of this algorithm shows that, when e is a the input such that a node takes the value I If it occurs at the
simple threshold function , the process converges for a rather Intersection of a I in the left and right eyes (see figure 2), and it
wide range of parameter valves (16). The specific form of the has value 0 otherwise. The n’ rwork iterates on this initial state ,
operator is apparently not very critical, and the parameters used here, as suggested by the combinatorial

Non-Iterative local operations cannot solve the stereo anal y sis , were
problem in a satisfactory way 01). Recurrence and non-linearity S — 3.0, e - 2.0 and M - 5, w hcre S is the threshold and M is the
are necessary to create a truly cooperative algorithm that cannot diameter of the “excitator y” reighborhood illustrated In figure
be decomposed into the superposition of local operations (17). 2c. The ster eograms themselves are labelled LEFT and
General results concerning ss ch algorithms seem to be rather RiGHT, the Initial state of the network as 0. and the state after
difficult to obtain, although we believe that one can usually is Iterations Is marked as such. To understand how the figures
estab lish convergence in probability for specific forms of them. represent sta tes of the network , ima gine looking at i t from

above. The different disparity layers in the network lie in
Examples of Applying the Algorithm parallel planes spread out horizontally, so that the viewer is

Random-d ot ste reograms offer an ideal input for testing looking down through them. In each plane. some nodes are on
the performance of the algorithm. Since they enable one to and some are of f. Each of th~ seven layers in the network has
bypass the costly and delicate process of transforming the been assigned a different gray level, so that a node that is
intensity array received by each eye into a primitive description switched on in the top layer ( :orresponding to a disparity of .3
(14). When we ourselves v iCw a random-dot stereogram . we pixels) contributes a dark point to the image, and one that is
probably compute a description couched in terms of edges switc hed on in the lowest layer (disparity -3) contributes a
rat her than squares, wherea s the inputs to our algorithm are the lig hter point. Initiall y ( I te rat ion 0) the the network is
positions of t he black squares. Figures 3, 4. 5 and 6 show some disorganized , but in the tisial state , stable order has been
exam ples In which the Iterative algorithm successfull y solves the achieved (iteration Ii). and t he Inverted wedding-cake structure
correspondence problem. thus allowing disparity values to be has been found The density of thit stereogram is 50~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Our analy ses of the com putation , and of the cooperative
algorithm that implements ii. raise severa l precise questions for
psychophysics and physiqiogy An important preliminary point

____________________________________________________________ concerns the relative importa~ice of neura l fusion and of eye-
movements for stereo psis. The underlying question is. are there
many dispar ity “layers’ (as our algorithm requires), or are there
just three ‘pools” (18) -- crossed , uncrossed and zero disparity.
Most phys iologists and ps ychologists seem to accept the
existence of numerous , shar ply tuned binocular “dis parity

~~~~~~~~~~~ detectors ”, whose peak sens itivities cover a wide range of
disparity values (19. 20). We do not feel that the available
evidence is decisive (21). but an answer is cr i t ical  to the
biological relevance of our anal ysis. If for examp le there were
only three pools or layers w ith a narrow range of dis parity
sensitivities , the problem of ta lse targets is virtually removed.
but at the expense of having to pass the convergence plane of

• 
~~~ 

_,

~~ 
. the eyes across  a sur face  in order to ach ieve  fus ion

~~~~~~ ~~~~ 
‘ V Psychop hysical ex periments are presently under way to gain

• 
. some ins ight into this problem , but we believe that onl y

-Z ‘“ physiology is ca pable of providing a clear-cut answer.

3 ‘~,

• •• -:

4. The algorithm of equation 2. with parameter values given in
the legend to fi gure 3, is capable of solving random-dot
stereograms with densities from 50% down to less than lOT.. For
this and smaller densities , the algorithm converges increasing ly .t ‘
slowly. If a simple homeostatic mechanism is allowed to control
the threshold I as a function of the average activity (number of
“on” cells) at each iteration (compare ref. IS). the algorithm can
solve stereograms whose density is very low. In this examp le.
the density is 5% and the central square has a disparity of .2
relative to the background. The algorit hm “fills in” those areas
where no dots are present, but it takes severa l more iterations to
arrive near the so lution than in cases where the density is 50%.
When we look at a sparse stereogram. we perceive the shapes in
it as cleaner than those found by the algorithm. This seems to
be due to sub ject ive contours that arise between dots that lie on
shape boundarses.

assi gned to items In each image. Presently, its technical
applications are limited only by the preprocessing problem.

This algorithm can of course be realised by various
mechani sms , but parallel , recurrent , nonlinear interact ions , both
exci tator y and inhibitory, teem t he most natural. The 5 The disparity boundaries found by the algorithm do not
difference equations set out above would then represent an depend on.their shapes. In Ii;ures a, b and c we give examples
approximation to the differential equations that describe the of a circle, an octagon (notice how well the difference between
d ynamics of the network. them is preserved) and a triang le. The fourth examp le (d)

shows a square in which the correlation ii 100% at the bounda ry.
Imp licat ions for Biology but diminishes to 0% in the center. When one views thi s

We have hit herto refrain ed from discussing the biological stereogram, the Center appears to shimmer in a peculiar way In
problem of how stereopsis is achieved in the mammalian brain, the network , the center is unst.sble. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-.-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —
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I 

Discussion
Our a lgorit hm performs a computation that finds a

correspondence function between two descriptions, subject to the
- two constraints of uniqueness m d  continuity. More generally, if

one has a situation where “allowable” solutions are those that
• • satisf y certain local constraints , a cooperative algorit hm can

- . often be constructed so as to find the “nearest” allowable state to
an initial one. Provided that the constraints are local, use of a
cooperative algorit hm allows the representation of global order .
to which the al gorithm converges , to remain implicit in the

- network’s structure.
The interesting difference between this stereo algorithm

and standard correlation techniques is that one is not required
• to specif y minimum or maximum correlation areas, to w hich the

ana lysis is subsequentl y restricted. Previous attem pts at
implementing automatic stereocompar ison throug h loca l
corre lation measurement have failed in part because no single
neighbour hood size is always correct (I?). The absence of a
“characteristic scale” is one of the most interesting properties of
this algorithm, and it is a centra l feature of several coo perati ve

• • phenomena (22). We conjecture that the matching operation
implemented by the algorithm represents In some sense a
generalised form of correlation , sub ject to the a priori
requirements imposed by the constraints. The idea is easil y
generalisable to different constraints and to other forms of
equations (I) or (2). and it is technically quite appealing.

Coo pera t i ve  al gorithms may have many useful
applications, (for example to best-match associative retrieval
problems (IS)). but their re levance to early processing of
information by the brain iensains an open question (23).
Although a range of early visual processing problems might
yield to a cooperative approach ( fiiling-in” phenomena .

6 The width of the minimal resolvable area increases with sub jective contours (24). groupIng, fi gural reinforcement ,
disparity. In all four stereogisms the pattern is the same, and texture fields”, the correspondence problem for motion), it is

consists of five circles with di~rneters 3,5, 7, 9 and 13 dots. The important to emp hasize that in problems of biological
disparity values exhibited here are .1, .2, .3 and *6, and for information processing, the first important and difficult task Is
each pattern , we show the state of network after 10 Iterat ions. to formulate the underlying computation precisely (3). After
As far as the network is concerned , the last pair (disparity .6) is that , one can study good algorithms for It. In any case , we feel
uncorrelated , since only disparities from -3 to .3 are present In that an experimental answer to the question of whether depth
our implementation. After 10 iterations, information about the perception is ac t ual l y a cooperative process is a critical
lack of correlation is preserved in the two largest areas. prerequisite to further attempts at analysing other perceptual

processes in terms of similar algorithms.

If this preliminary questitin is settled in favour of a ‘multi-
layer ” coo perat ive al gorithm , t here are several  obvious
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PARAMETRIC CORRESPONDENCE MiD CHAMFER MATCHING :

TWO NEW TECHNIQUES FOR IMAGE MATCHING

H . G.  Ba rrow , J.M. Tenenbauzn, R.C. Bolles, H.C. Wolf

Artificial Intelligence Center
Stanford Research Institute

Menlo Park, California 94025

Abstract different viewpoints , sensors, or seasonal
or climatic conditions , and it cannot

Parametric correspondence is a match images against symbolic maps.
technique for matching images to a three
dimensional symbolic reference map . An Parametric correspondence matches
analytic camera model is used to predict images tO a symbolic reference map , rather
the location and appearance of landmarks than a reference image. The map contains
in the image , generating a projection for a compact three—dimensional representation
an assumed viewpoint. Correspondence is of the shape of major landmarks , such as
achieved by adjusting the parameters of coastlines , buildings , and roads. An
the camera model until the appearances of analytic camera model is used to predict

description extracted from the image . in the image , generating a projection for
the landmarks optimally match a symbolic the location and appearance of landmarks

an assumed viewpoint. Correspondence is
The matching of image and map features achieved by adjusting the parameters of

is performed rapidly by a new technique , the camera model (i.e. the assumed
called “chamfer matching” , that compares viewpoint) until the appearances of the
the shapes of’ two collections of’ shape landmarks optimally match a symbolic
fragments, at a cost proportional to description extracted from the image.
linear dimension , rather than area.
These two techniques permit the matching The success of this approach requires
of’ spatially extensive features on the the ability to rapidly match predicted and
basis of shape , which reduces the risk of sensed appearances after each projection.
ambiguous matches and the dependence on The matching of image and map features is
viewing conditions inherent in performed by a new technique , called
conventional image—based correlation “chamfer matching” , that compares the
matching, shapes of two collections of curve

fragments at a cost proportional to linear
dimension , rather than area.

Introduction In principle , this approach should be
superior , since it exploits more knowledge

Many military tasks require the of the invariant three dimensional

ability to put a sensed image into structure of the world and of the imaging

correspondence with a reference image or process. At a practical level , this
map . Examples include vehicle guidance permits matching of’ spatially extensive
(navigation and terminal homing), photo features on the basis of shape , which
interpretation (change detection and reduces the risk of ambiguous matches and
monitoring) , and cartography (map dependence on viewing conditions.
updating). The conventional approach is
to determine a large number of points of’
correspondence by correlating small Chamfer Matching
patches of the reference image with the
sensed image . A polynomial interpolation Point landmarks , such as intersections

is then used to estimate correspondence or proinontories, are represented in the

for arbitrary intermediate points map with their associated three

(Bernstein]. This approach is dimensional world coordinates. Linear

computationally expensive and limited to landmarks , such as roads or coastlines ,

cases where the reference and sensed are represented as curve fra~ iients with

images were obtained under similar viewing associated ordered lists of world

conditions. In particular , it cannot coord inates. Volumetric structures, such

match images obtained from radically as buildings or bridges , are represented
as wire-frame models.
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From a knowledge of the expected The traditional method of calibrating
viewpoint , a prediction of the image can the camera model takes place in two
be made by projecting world coordinates stages: first, a number of known landmarks
into corresponding image coordinates , are independently located in the image ,
suppressing hidden lines. The problem in and second , the camera parameters are
matching is to determine how well the computed from the pairs of corresponding
predicted features correspond with image world and image locations, by solving an
features, such as edges and lines, over—constrained set of equations [Sobel,

Quasi, Hannah].
The first step is to extract image

features by applying edge and line The failings of the traditional method
operators or tracing boundaries. Edge stem from the first stage . The landmarks
fragment linking [Nevatia , Perkins] or are found individually, using only very
relaxation enhancement [Zucker , Barrow~ is 

local context (e.g. a small patch of
optional. The net result is a feature surrounding image) and with no mutual
array each element of which records constraints. Thus local false matches
whether or not a line fragment passes commonly occur. The restriction to small
through it. This process preserves shape features is mandated by the high cost of
information and discards greyscale area correlation , and by the fact that
information , which is less invariant, large image features correlate poorly over

small changes in viewpoint.
To correlate the extracted feature

array directly with the predicted feature Parametric correspondence overcomes
array would encounter several problems : these failings by integrating the
The correlation peak for two identical landmark-matching and camera—calibration
curves is very sharp and therefore stages. It operates by hill—climbing on
intolerant of slight misalignment or the camera parameters. A transformation
distortions [Andrus]: A sharply peaked mat rix is constructed for each set of
correlation surface is an inappropriate parameters considered , and it is used to
optimization criterion because it prOvides ~‘0je~t landmark descriptions from the map
little indication of closeness to the t rue  onto the image at a particular

match , nor of the proper direction in translation , rotat ion , scale and
which to proceed: Computational cost is perspective. A similarity score is

heavy with large feature arrays. computed with chamfer matching and used to
update parameter values. Initial

A more robust measure of similarity parameter values are estimated from

between the two sets of feature points is navigational data.

the sum of the fistances between each
predicted feature point and the nearest Integrating the two stages allows the
image point. This can be computed simultaneous matching of all landmarks in
efficiently by transforming the image their correct spatial relationships.
feature array into an array of numbers Viewpoint problems with extended features
representing distance to the nearest image are avoided because features are precisely
feature point. The similarity measure is projected by the camera model prior to
then easily computed by stepping through matching. Parametric correspondence has
the list of predicted features and simply the same advantages as rubber—sheet
summing the distance array values at the template matching [Fischler , Widrow) in
predicted locations. The distance values that it obtains the best embedding of a
can be determined by a process known as map in an image , but aycids the

“chamfering” , in two passes through the combinatorics of trying arbitrary

image feature array [Munson , Rosenfeld]. distortions by only considering those

Mote that this determination is made only corresponding to some possible viewpoint.

once , after image feature extraction.

Chamfer matching provides an efficient An Example

way of’ computing the integral distance
(i.e. area), or integral squared The following example illustrates the

distance , between two curve fragments, two major concepts in chamfer matching and

commonly used measures of’ shape parametric correspondence. A sensed
similarity, image (Figure 1) was input along with

manually derived initial estimates of the
camera parameters. A reference map of the

Parametric Correspondence coastline was obtained , using a digitizing
tablet to encode coordinates of a set of

Parametric correspondence puts an 51 sample points on a USGS map.

image into correspondence with a three Elevations for the points were entered

dimensional reference map by determining manually. Figure 2 is an orthographic

the parameters o~’ an analytic camera model 
projection of this three dimensional map.

(3 position and 3 orientation oaraiaeters). 

~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - - -‘—--‘ -—--—--- . .,
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A simple edge follower traced the high matches , and avoids the combinatorial
contrast boundary of the harbor , producing complexit y of f inding the optimal
the edge picture shown in Figure 3. The embedding of multiple local features.
chamfering algorithm wan applied to this
edge array to obtain a distance array . A number of obstacles have been
Figure ~ depicts this distance array; encountered in reducing the above ideas to
distance is encoded by brightness with practice. The distance metric used in
maximum brightness corresponding to zero chamfer matching provides a smooth ,
distance. from an edge point. monotonic measure near the correct

correspondence, and nicely interpolates
Using the initial camera parameter over gaps in curves. However , scores can

estimates , the map was projected onto the be unreliable when image and reference are
sensed image (Figure 5). The average badly out of alignment. In particular ,
distance between projected points and the discrimination is poor in textured areas ,
nearest edge point , as determined by aliasing can occur with parallel linear
chamfer matching, was 25.8 pixels, features, a single isolated image feature

can support multiple reference features.
A straightforward optimization

algorithm adjusted the camera parameters, The main problem is that edge position
to minimize the average distance. is not a distinguishing feature , and
Figures 6 and 7 show an intermed iate state consequently many alternative matches
and the final state, in which the average receive equal weight . One way of
distance has been reduced to 0.8 pixels. overcoming this problem, therefore, is to
This result , obtained with 51 sample use more descriptive features: brightness
points , compares favorably with a 1.1 discontinuities can be classified , for
pixel average distance for 19 sample example , by orientation , by edge or line ,
points obtained using conventional image and by local spatial context (texture
chip correlation followed by camera versus isolated boundary). Each type of
calibration. The curves in Figure 8 feature would be separately chamfered and
characterize the local behavior of this map features would be matched in the
minimum , showing how average distance appropriate array. Similarly, features
varies with variation of each parameter at a much higher level could be used , such
from its opt imal value , as promontory or bay, area features having

particular internal textures or
structures , and even specific landmarks,

Discussion such as “the top of the Transamerica
pyramid” . Ideally, with a few highly

We have presented a scheme for differentiated features distributed widely
establishing correspondence between an over the image the parametric
image and a reference map that integrates correspondence process would be able to
the processes of landmark matching and home in directly on the solution
camera calibration. The potential regardless of’ initial conditions .
advants,~es of this approach stem from 1)
matchl.r’.g shape , rather than brightness , 2) Another dimension for possible
matching spatially extensive features, improvement is the chamfering process
rathe” tr in small patches of image , 3) itself. Determining for each point of

matching simultaneously to all features , the array a weighted sum of distances to

ather than searching the combinatorial many features (e.g. a convolution with

-3pace of alternative local matches , ~4) 
the feature array), instead of’ the

using a compact three dimensional model , distance to the nearest feature, would
rather than many two dimensional provide more immunity from isolated noise
templates. points. Alternatively, propagating the

coordinates of the nearest point instead

Shape has proved to be much easier to of merely the distance to It , it becomes
ir.odel and predict than brightness. Shape possible to use characteristics of
is a relatively invariant geometric features, such as local slope or
property whose appearance from arbitrary curvature, in evaluating the goodness of’
viewpoints can be precisely predicted by match. It also makes possible a more
the camera model. This eliminates the directed search , since corresponding pairs
need for multiple descriptions , of points are now known , an improved set
corresponding to different viewinu Of parameter estimates can be analytically
conditions , and overcomes difficulties of determined .
matching large features over small changes
of’ viewpoint. Chamfer matching and parametric

correspondence are separable techniques .
The ability to treat the entirety of’ Conceptually, parametric correspondence

the relevant portion of’ the reference map can be performed by re—projecting image
as a single extensive feature reduces chips and evaluating the match with
significantly th~ i f. of ambiguous correlation. However , the cost of

. — .—.—~~. . , . ., - 
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projection and matching grows with the especially geometry. However , they are
square of the template size: The cost for overly sensitive to changes in viewing
chamfe r matching grows linearly with the conditions and cannot make use of ’ non—
number of feature points. Chamfer pictorial information. Symbolic matching
matching is an alternative to other shape techniques, on the Other hand , are more
matching techniques , such as chain—code robust because they rely on invariant
correlation [Freeman], Fourier matching abstract ions , but are less precise and
(Za hn) , and graph matching (e.g. Davis]. less efficient in handling geometrical
Also , the smoothing obtained by relationships. Their applicability in
transforming two edge arrays to distance real scenes is limited by the difficulty
arrays via chamfering can be used to of reliably extracting the invariant
improve the robustness of conventional description. The techniques we have put
area—based edge correlation, forward offer a way of combining the best

features of iconic and symbolic
Parametric correspondence , in its most approaches.

general form, is a technique for matching
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Figure 1. An aerial imag e of a section Figure 3. The traced boundary of the
of coastline , coastline .
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Fi~u~e 2.  a set ci sample points  ta,c~ Figure 4. The distance array produced by
f rom a USGS map ,  chamfering the boundary.
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Figure 5. Initial projection of map Figure 7. Projection of map points onto
points onto the image. the image after opt imization

of camera parameters,

—I—
Figure 6. Projection of map points onto Figure 8. Behavior of average distance

the image after some score with variation of the
adjustment of camera six camera parameters from
parameters. their optimal values.
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SYMBOLIC IMAGE REGISTRATION the values for all pixels in the region (one histogram for

AND CHANGE DETECTION each spectral input), The threshold values are selected as
the upper and lower bounds of the “best separated” peak
which appears in the set of histograms, There are two

Keith Price and 0. Raj Reddy problems in the use of this technique for the segmentation
of our set of Images. First, the segmentation method is

Department of Computer Science much too slow for processing a large set of images in a
Carnegle—Molion University reasonably short time. Second, the segmentation technique

Ptt sburgh, Pa. 15213 was developed for multi-spectral images and could not be
expected to work as well on the monochromatic images.

Ptannlng: The first problem is solved by the
introduction of “planning.” 9y planning, we mean the

Summary generation of an approximation for the final segmentation
This paper describes research toward the using a reduced version of the image and the usa of this

development of symbolic registration and change detection approximation as a plan to more eff iciently derive the true
techniques directed toward the problem of the comparison segmentation of the image. Ohlander gave a time of about
of paIrs of different images of the same scene to generate ten hours for the segmentation of a color image w ith 0.5
des criptions of the changes in tho scene, Unlike earlier million pixels (nine parame ter for each pixel , each parameter
wor k in the change analysis area, all the matching and represented by about eight bits). This time would be
change analysis is performed at a symbolic level rather than reduced to about five hours, if run now, because of simple
a signa l level. To facilitate this symbolic analysis over a al gorithmic improvements to many of the programs which he
wide varie ty of images , advances in several other areas of used (such as to the smoothing procedure). The use of
image anal ysis are also required. These areas are: planning further reduces the to tal time to less than one half
segmentation techniques to genera te the basic units used in an hour (inciuding the reduction time), or about one order of
the symbolic analysis, feature analysis to generate the magni tude. There is also overhead involved in the
symbolic description of the regions and Image, use of ma~ipuiation of large images which is not reflected in these
knowledge to guide the segmentation and symbolic times. We present the segmentation times in hours rather
registration procedures, and lastly change analysis itself, than the number of operat ions which was used elsewhere in
We applied this procedure on several diverse scenes (house, this thesis to enable the comparison with the times ”for
citysca pe, satellite images, aerial images, and radar images), Ohlander’s segmentation. Both of these segmentation
each of which included a task description and a pradefined systems were run on the same computer system, so that the
set of knowled ge elements, and have shown how several times are comparable.
different tasks can be performed with a general change Monochromatic lma~es: The segmentation of
analysis system. monochromatic images required additional alterations to the

initial segmentation method. The original segmentation
Summary of the Tasks method was based on the hope that if one featu re can not

The scenes which we analy~’.e (see Price, 1976) for a provide a reasonable split of the region, then, perhaps,
more comple te description) are: a simple house scene, a some other color feature. For example if two regions have
cityscape scene, a LANI)SAT (satellite) scene showing snow the same intensity but are different colors , then the
cover changes, a ~~~ (side looking radar) scene, an aerial intensi ty parameter alone could not be used for

I scene, and an aerial ~~~~ or industrial scene. The segmentation, but another color parameter (possibly hue or
first two scenes have three initial spectral inputs, the Q) w i ll help in the segmentation. When the procedure Is
LANDSAT scene has four, and the other three have only one presen t ed with only one spectral input, there is no other
(intensity of radar signal or visible light). The tasks are: co lor parameter to turn to when there is only one peak in
Perform simple symbolic registration for the house scene, the histogram. The large monochromatic images also
Perform symbolic registration in a more textured scene with contained many small different objects which caused the
changes in the relative position of objects using the histogram to have only one peak since the range of
ci tyscape scene. Perform the analysis of a differen t intensities for each region overlapp ed the ranges of
spectral domain (radar) and symbolic reg is tration with th e intensity for oth er object.
SLR scene, Perform symbolic registration in the presence of We can introduce additional spectral-like features by
rotations in the aerial rural scene. Perform sym bolic the use of simple textural operators designed to show
registration and the analysis of the area of snow cover in specific features such as homogeneous regions, or high
the LANDSAT snow cover scene. And, finally, usip~ contrast areas. We introduced a feature, the number of
knowledge guided segmentation , determine the change in the micro-edges In the reduction window, to indicate general
number of certain objects in the urban or Industrial scene. homogeneous regions. A homogeneous region is one with

few micro-edges so that these reg ions can be extracted by
Segmentation using a threshold of zero edges in the plan image. The

The first step towards the generation of a symbolic points whore the few edges occur will appear as small holes
descrip t’on of an image is to divide continuous image signal in the segmented region ~nd are eliminated by the
into discrete components sharing similar properties. 0~rr smoothing process. This thrnshold could not be applied
work on segmentation is an extension of the histogram directly to the initial micro-edge image (it is a binary image).
guided region splitling technique developed by The ind ividual micro~edges would appear as small holes (a
Ohlander(j 975). This method was originally developed for few points) in the thresholded image and would be
use on color iniaget. Uasically the procedure splits a region swallowed up in the homogeneous region by the refining
into subregions thresholdirig one of the spectral inputs. The and extraction procedures. The smooth regions generated
threshold is selected by the analysis of the histograms of
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by the plan limit the area where this threshold is applied so features is insignif icant since these features are derived
that Only a small number of edge points are swallowed up. from other values (such as the len,gth to width ratio, the
The regions which are extracted are more sensitive to noise orienta tion, fractional fill, periiireter~ feirea) . The expensive
in the image, especially noise in one part of the image such operations were the ones performed on all the points in the
as scratches. This feature is not generally useful for the region, where aiost of the expense was in looking at the
extrac tion of exact regions, but proved useful for the region points rather than computing feature values. The
extrac tion of general homogeneous regions. expensive features included: the color averages (mostly

Another textural measure is the excursion of intensity because they are used so often rather than being
values in the reduction window (maximum in the window ind ividuall y expensive), boundary computati ons (though it is
minus minimum in the window). This measure is applied to less expensive than color averages since fewer points are
the SLR scene to distinguish between the high contrast accessed), orientation transformation computations (since
areas and the low contrast areas. This textural measure they use the boundary computation), the initial color and
generated large general regions which correspond to the texture 

, 
transformations , and the relative position

general tex tured areas. These were the only textural computations (which are expensive only because of the
operators which were used in the segmentation of images. machine implementation) . Like the segmentation operations,

Many other opera tors are possible, and for easy the expensive feat ure computations are amenable to
Incorporation in a general segmentation method the implementation on special processors. The major descriptive
operators should produce image like values for all points in fea ture which we did not study is the extensive use of
the image. There are many possible textural operators , but textural measures.
we did not want to turn this thesis into an exp loration of all
possible texture Operator s . The intent was not to judge the Symbolic Registration and Change Analysis
quality of other textural operators , hut it should be easy to The earlier sys tems for change analysis relied on
incorporate others into this system. correlation guided matching to locate corresponding pcu~nt

Another technique used in the computation of pairs and used the location differences of these point pairs
histograms was to use portions of the image rather than for either for transforming one image so that it is aligned wi th
the entire image. This was intended to approach a solution the Other , or for depth anal ysis of stereo Images. The
to the problem of many small similar regions. The use of aligned images are subtracted , producing a third difference
partilions means that the number of separate objects which image. This differenc e image must then be analyzed to
contril,ute to one histogram is reduced. If the partitioning determine where the changes occurred , and whal type of
of the image is continued as far as possible, at some point changes occurred. Special purpose sys tems have been built
there will be only two distinct regions (or possibl y one) to to perform these tasks , so that these apparently expensive
contribute to the histogram. At this point the threshold for operations are performed quickly. Change analysis systems
segmentation would be obvious. Going to these extremes w hich are intended to operate on uncontrolled image pairs
should not be necessary. We implemented a division of the (i.e. not stereo pairs) encounter several problems. The
image into only four or nine partit ions. addition of more co lor parameters makes the problem more

complex since the extra spectral inputs must he processed
Feature Extrac tion j ust like the initial input instead of simplif ying the

There are at least two very different techniques to processing. Major c hanges in the point of view of the
give a symbolic representation of an image. One is a three- observer (especially in oblique views) will cause objects to
dimensional clescrip lion of the objects in the scene such as change position with respect to each other and can cause
representing all objects by a set of simple three- inaccurate matches when those matches depend on intensity
dimensional objects. This representation did not appear to values in a neighborhood and are diff icult (if possible) to
be feasible to derive from general multiple views , and did account for in a global warping of the image. These sys tems
not appear to be very useable for change analysis. We used a “rubber sheet” warping so Ihat points adjacent in
decided that the symbolic doscriplion would be composed of one image are assumed to be adjacent in the other image. A
a set of regions which would be t hose generated by the new object in the scene can cause errors in matching, but
segmentation procedure , and a set of features for each such changes would usually be indicated as large differences
region describing various properties of the reg ion. We in the difference image.
group the featur es into classes siniiliar to those used by We presen t symbolic matching as an alternative
human beings performing the same sod of tasks. These matching technique to eliminate the problems encountered
feature classes include size, shape, color (including texture), by earlier signal based change anal ysis methods. The

location, and patterns. The exact feature measures wore addition of extra spectral inputs makes the segmentation
designed to captur c various aspects of these feature processing easier and more reliable , and, if the desired
classes. We computed the region size , absolute position of regions are large enough, the use of planning means that
the center of mass , Ihe position relative to otl~er regions the segmentation times will not be adversel y alfe cted by the
(above , below , etc.) adjarencies , average of color values or addition of morn inputs. Ako, t he addit ion of color
textural values , Orientation , orientation independent length parameters means that the matching procedures will have
to width ratio, the fraction of the minimum bo~nding morn features to use in the malching, this should also
rectang le filled by the region, and the perime ter ’/area improve the reliability of the symbolic registration. Since
designed to indica te irregular regions. These are not all the the matching for one region does not necessaril y depend on
feature measures which might he necessary for other tasks , the intensity values in the image adjacent to the region
and results should be more reliable whcn more features are being matched , the change in the relative position of ob~etts
available, should not reduce the chances of a corr ect match . We use

The methods for the computation of these features severøl different features of the regIon including the
were not optimized. The computation eff ort for some adjacency and relative position rela tions , but the knowledge
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about the scene can specify that the relative position or images, the absolute size and location features will change
adjacency relations will change: thus indicating that these and can not be used as constant features in the matching
fea tures are not used for the symbolic registration. New operation. But with the use of the computed scale
objec ts are ind icated by regions in the second image which difference , the size feature can be used as if it is a constant
had no correspond ing region in the first image, and missing fea ture. This use of the change results derived from the
obje c ts by regions which fail to match with any region. initial symbolic matching procedure can also be applied to
Finally, the change results produced by a signal based the absolute location and orientation features , in addition to
change analysis system are in the form of another image the size feature. These adjustments can apply Only when
and must then be processed again to determine what the changes are uniform throughout the image, which is not
changes have occurred. The symbolic change analysis the case when there are perspective changes as in oblique
system describes the changes as changes in the features of views. But such adjustments are possible to use in most
regions (or changes in the number of occurrences of an aerial images.
objec t). Thus there is no need for extensive processing of The pier subsection was used for the analysis of the
the resulting image to discover the kinds of changes, since changes to determine the number Oi “ship” regions in the
these changes are given directly from the symbolic analysis. two images. To perform this task we generated a pseudo-

Symbolic Registration: We developed a procedure image containing a representative ship, pier, water , and
which will determine a match rating for two regions in two shadow reg ion. We then matched the two pier area
different images. This rating procedure incorporates the segmenta tions with this pseudo-image to determine which
differences between all available featur es of the regions. If reg ions are “ships.” The results of this analysis are shown in
the match is exact (e.g. matching a region with itself) then Figure 2. Some of the “ships” were incorrectly segmented:
the rating will he zero, and as the matc h worsens , the rating they were broken into two regions, or Only half of the
decreases. The knowledge sources can indicate that certain reg ion was segmented and the other half was merged with
fea tures will change and thus should not he used in the Other regions (such as the piers or water). But the ship
matching procedure. For example, when the task description reg ions which were segmented were matched to a ship
indicates that there are rotoiion differences between the region. In the first subsection some errors occurred. The
t wo images, the matching procedure will not use the rotation wa ter reg ions were not as smooth and thus the average
dependent features such as the absolute position, the intensity and number of micro-edges in some of the water
orientation, reg ions above, regions below , etc. Rather than areas resembled the ship parameters more than the water
eliminate the use of these features altogether , we introduce parameters. In the second subimage errors were also
different strengths for features which should remain caused by the matching of s m all part s of piers to ships
constant and features which will change. The strengths are because of the number of micro-edges in these pier regions.
selected so that a bad match in one feature that should This was an attempt to extend the matching procedure Into t
remain constant wilt have more impact than several bad a rudimentary “recognition” procedure to compute the
matches in features which may change. This region to number of occurrences of a type of region feature.
region match procedure is used in the symbolic regis tration The symbolic registration and change analysis ’
proced ure to find the best available match. To find the processing is relativel y fast when compared with all the
region in the second image which corresponds to a region in other processing. This processing is best suited for
the first image , the symbolic registration procedure matches implementation on general purpose computers rather than
each possible pair of reg ions to find the best match. This special  purpose processors.
best match is considered to be the corresponding region.
Even if a reg ion does not have a corresponding region in Conclualon
the other image, some region will be selec ted as the In this paper we have described the structure and
correspond ing regiuil. This region will be the most similiar presen t state of perfomance of a symbolic registration and
region, but these two regions should have differences in change detection system. This appears to work well in a
features which should remain constant. Also , another region wide -. arirsty of in4ages in find ing corresponding regions.
in the first image should correspond to the same region in The match is based purely on symbolic features and the
the second image. This matching procedure has besn system clearly demostrates the feasibility of image
applied to the six sets of images. We generated about a reg istration including cases whore signal registration
dozen sets of symbolic matching results (because ~~ 

techniques would have failed either because of w ide
match the second image to the first image in addition to diffe rences in the direction and position of view (See also
matching the first image to the second image we can the paper by CDC in this volunin). The concept of change
generate more sets of matching results than we have analysis , on the otherhand, proved to be more elusive, It
scenes). Several images including monochromatic and side - appears to be extrem ely task dependant Ic. one has to
looking radar imiuages were reg is tered using this technique. impose subs tantia l task structure and correspondingly highly
Figures 1 and 2 illustrate the nature of the results obtained task specific programs before on can have useful change
by this technique in the presence of changes in perspective detection systems. At present , work is in progress to
and scale. extend these techniques to a larger class of images with

Change Analysis: For some images we are given more severe percpect’ve and scale changes.
(through tho image description) the fact that there is a scale Referonces
change between images (as in the urban-industrial scene). R. Ohlander (1975). “Analysis of Natural Images,” Ph.D
The amount of the scale change is not given by the Thesis , Department of Computer Science , Carnegie-
knowledge elements , but it can be computed from the size Mellon University, Pittsburgh, PA. (April 1975).
difIer~ nces found in earl y matches. This scale change is K. Price (1976). “Change Detection and Analysis of Multi-
used to adjust the size measures for regions in later Spectral Images,” Ph.D Thesis , Department of Computer
matches. Since these is a scale difference between the two Science, Carnegie-Mellon University, Pittsburgh, PA.

(Dcc. 1976).
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IMAGE REGISTRATI(~ EXPERIMENTS

B. Gu sh, W. Kober , 0.

Control Data Corporation, Digital Image Systems Division

ABSTRACT groups of ascending abstraction.

The usefulness of symbolic level process- 1. Raw signal level
ing was evaluated for image registration.
Coarse alignment points were obtained using • Intensity (or tonal) image
segmentation procedures. These were used as
coarse alignment of a precision registration • Range image
technique. The results indicate tha t this
procedure is effective for matching images, • Intensity vs. range (three diman—
which have gross differences between them. sional) image

2. Enhanced signal level
INTR~~UCTION

e Spatial frequency filtered image
Image registration is of major importance

in many imagery processing systems. Examples • Edges
are; scene matchers for navigation and termi-
nal guidance, overlay of reconnaissance and • Intensity or tonal slice
reference data bases for target position trans-
fer, registration to prioC coverage fot te~— 3. Symbolic level
poral analysis and change detection, overlay or
fusion of najltiaenaor data and stereo photo” • Tonal regions
grammue t ry.

• Texture regions
The principal matching techniques to date

are signal level matchers. That is the sensor • Object shapes
signal of intensity or range is arranged in a
two dimensional array or image. Registration Group 2 might be considered symbolic level but
is achieved by driving this image into corres— principally is only a deletion of portions of the
pondence with a reference image. While these image. Furthermore, these features are already
techniques have been generally satisfactory, in wide spread use and hence are outside the
they require both spatial and signal similarity spirit of this effort.
between images. Gross dissimilarity due to
di f fe ren t  viewing geometry, seasonal variations , STUDY APPROACH
sun angle variations, weather conditions and
changes in the scene Content can defeat the The application is restated as:
registration process,

Precision matching of two images of a scene
Recent efforts on symbolic level represen- in spite of:

tations offer the promise of increased toler-
ance to image dissimilarity. To this end, Car- • Seasonal change
negie Mellon University and Control Data under-
took a joint effort. Control Data selected • Illumination change
imagery which represented difficult problems in
image registration, Carnegie Mellon applied e Ground change
symbolic level procedures to find suitable match
parameters and subsequently transferred these to • Viewing geometry change
Control Data for evaluation. The results are
described below. • Different sensor types

DEFINITIONS The problem is:

The dia t inct ion between signal and symbolic Signal level matchers tolerate only limited
level representation is not always clear. For variation between images.
the present study we arranged them into three
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The approach is:

Utilize symbolic level representations for
coarse match and signal level for precision
matching.

APPLICATION: CHANGE DETECTION
The approach is illustrated in Figure 1,

One app lication requiring precision regis-
tration is change detection . An example of a
difficult case is the Norfolk Harbor scene. The
two images of this scene are shown in Figure 2Scene 1 Symbolic Level Signal Level and 3, They were taken under the following con-Scene 2 Coarse Match Fine Match 
ditions :

Figure 1. Approach
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FACTOR IMAGE 1 IMAGE 2

DATE 28 Jan 71 14 Apr 72 IMAGE I IMAGE 2
TIME 1310 1520
ALTITUDE 4800’ 5700’
SCALE 1:9600 1:11,400
SHADOWS Yes No
GLINT No Yes

- 
SCENE

GROUND CHANGES: VEHICLE MOVEMENT,CONSTRUCTION ENHANCEMENT
SHAD OW
GLINTSegmentation processing using tonal and tex—

tore features by S. Price1 at CMU provided the
symbolic level feature maps shown in Figure 4.
His processing included a search which identified
12 matching features between the two images. The
centroids of these 12 were then used as the coarse I PRECISIONregistration parameters. i REGISTRATION 4

I TRANSLATEThe fine registration procedure used was a L SCA LEprecision correlation algorithm called TRAK devel-
oped previously at CDCE. TRAK allows control
points and scaling parameters to be inserted for
coarse alignment. Thus it was relatively easy to
incorporate the output from the symbolic level
coarse matching. Two alignment parameters were CHANG Ecomputed , 1) the most extreme points in x and y DETECTIONcoordinates were used to estimate scaling and
rotation between the two images, 2) two other __________________

points were used to estimate translation errors.
With these inputs, precision registration was Fig, 5evaluated for various options within the TRAK
routine. These options are listed in Figure 5.
Shadow and glint compensation remove these decor-
relating influences from the correlation.

V q

0
0

0

0
U

IMAGE 1 IMaGE 2
Fig. 4. Match Regions From Symbolic Level Process



~1

35

EXPERIMENTS The difference image after the precision registra-
tion of the two images, Fig. 2, 3 is shown in Fig.

Three experiments were conducted using the 6. The initial registration points were at the
same coarse registration points for acquisition left side of the image, in the vicinity indicated
and scaling, by arrow 1.

1) Precision registration of the original The initial registration points had some
two images, translation error as evidenced by a slight ghost-

ing (light ring) on the right edge of the oil
2) Precision registration with shadows and tanls. The precision registration algorithm re-

glint deleted in the registration process, covered and soon had the images in registration,
However, it then encountered regions with exten-

3) Precision registration after pre-process— sive shadowed portions in image 1 which were not
ing to remove redundancy, present in image 2. This caused the process to

diverge. By the time it reached the point indi-
cated by arrow 2 it had diverged beyond recovery.
At least two options are available at this junc-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ture. 1) Include more points from the segmen—
tation process so that the precision registration

1’. ,~ process can be re—initialized or 2) detect the
- shadow and glint regions, and delete them from

the registration process. The first option of re-
- start was not practical in this case since there

4 weren ’t any control points available in the region
of poor similarity.

The second option of shadow and glint re-
moval was used. The results of this process is
shown by the difference image, Fig. 7. Note that
the shadow and glint regions are retained in the
difference image. They were only left out during
the registration process. With this option, the
images were kept in registration over the entire
scene. This can be verified visually by exami-
nation of the difference image. For example, the
arrow at point 3 shows a distinctive region on

.~ the roof of a building. This was dark on both
images. Thus the difference image should be

2 close to the grey level corresponding to zero
difference. This is the case.

It should be noted that the registration
procedure also normalizes the tonal distributions
between images. Thus regions of different tonal

s ‘‘ values would be equalized before differencing.
The region used for adjustment mast be selectable
so as not to normalize out desired changes. Thus
it is both an image - and target - dependent
parameter.

Fig. 8 is the same difference image as Fig,7
but thresholded into positive (black) negative
(white) and no (grey) change regions. The selec-
tion of threshold determines the interval assigned
to no change. These are changes which have some

. . .~ level of contrast to the background. Visual in-
spection reveals changes due to shadows (arrow 4),
vehicle movement (arrow 5), ship movement (arrow 6)
and construction (arrow 7). It is significant

• that the precision registration and tonal normal-
ization permits a confident analysis of changes
due to the movement of small objects and to

• changes of low contrast. Furthermore, the shad-
ows can be deleted if they are distracting to the

• interpretation.

PREPROCESSING
Fig. 6. D I f fer ence  Image

One form of preprocessing often used is

_ _
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spatial filtering. For examp le, low pass filter— Another preprocessing technique tried was
ing can permit more tolerance to out-of—registra- an adaptive non-linear filter . Here the proced-
tion errors for an initial alignment procedure. ure retains edge discontinuities while smoothing
The image is re-mapped and then a more precise regions with no little tonal variation. The
registration is attempted. On each successive result of registration with this preprocessing is
run, the filter bandwidth is increased, shown in Fig. 9 as a thresholded difference

image, For comparison, Fig. 10 shows a thresh-
The Norfolk image was run with simp le low olded difference image wit~hout this preprocess-

pass filtering. However, the registration results ing. The results are dependent on the threshold
did not improve. The apparent reason for this setting but in general appear similar. The reg-
behavior is that much of the similarity between istration precision was about the same , The
images was in the edges. Filtering these edges major difference seems to be that the preprocess-
destroyed a significant amount of the correlation ing removes some of the noise while also losing
signal content, some of the change detail . Scene dependent know-

ledge is needed to determine if the detail dis-
carded is significant.

—
-

_

_  
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Fig. 7, Difference Image Using Shadow Deletion Fig. 8. Thresholded Difference Image
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• -

Fig. 9. Thresholded Difference Image With Preprocessing Fig. 10. Difference Image Without Preprocessing

One conclusion from this last experiment is Preprocessing by low pa~ s filtering gave
that the adaptive procedure gave better registration poor er reg istra t ion performance, A preprocess—

performance than simp le low pass filtering. However , ing.technique which retained detail gave similar

it needed shadow deletion to achieve reg istra tion, performance to the unpre—processed case. This

Thus the performance was not any better than with- illustrates a well known principle that prepro-

out preprocessing. ceSsing is sensitive to scene content as well
as to the amount of misregistration.

SUMMARY OF EXPERIME NT S
REFERENCES

The Symbolic level processing provided scale 1. ~~~~~ K. E., ‘Change Detection and Analysis
and translation information for coarse alignment , in t~talti-spectral Images”, Dept. of Computer
Subsequen t precision ngistration was successful Sc iences , CMU , 18 Dec , 1976.
only if the shadows were deleted in the registration 2. Lillestrand , R. L. “Techniques of Change Dc—
process . In this case, precise registration was tection”, LEE Transactions on Computers
obtained in spite of gross changes in scene content Vol . C-21 No 7, July 197’
and lighting conditions, 
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IMAGE SEGMENTATION AND OBJECT DETECTION BY A SYNTACTIC METHOD

Janniin K.eng
Purdu e Un ivers i ty

W . Lafa yette, I nd iana 47907

IN TR ODUCTIO N pa tterns ~n which the re is no boundary line or
just singular primit ive s or pixels in it. Ap—

Most of the exis t ing ima ge segmentation tech— p ly ing the tree grammatical inference procedure ,
n i q ues u t i l i z e on l y stat is t ical proper t ies of an a set of t ree  gramma r i s  in fe r red to describe the

• image and i gnore the useful syntactic and con— boundary structures.
tectua l Information . Since an image often ex-
h i b i ts a h ie ra rch ica l  st ruc ture , image segmenta— The t ree gramma r is Gttion can be effected by the syntactic approach.
This paper describes a syntactic image segmenta— G

~ 
— (V , r , P, S)

tion technique wh ich detects the edges of small
textural areas as well as larger ones from the where V — {S ,3,A 1, A2,A 1,A4,A61A,,
real world satellite and aerophotographic images.
This technique has been extended to the object a,b ,c,d,e,f,g,h}
detection. The experiments on tactical target
detection from the infrared ima ges have been con— r ( a)  — {O) r(b) — { l ,O} r(c)
duc ted, The experimental results show that this
technique is general and feasible to diffe rent — (3,2 ,1,0) r(d) — { 2,1 ,0)
types of ima ges for i mage segmentation and object
detection. r(e) — (2,1 ,0) r(f) = (3,2,1 ,0)

GRAMMA TIC AL INFE RENC E r(g) — (2 , 1 ,0) r(h) — (1 ,0)

In Keng and Fu [4], and Fu and Booth [2] the r(3) — (2 , 1)
de tails of gra mma t ical  inferences for tree gra m-
mar and tree transformational graewna r are de— VI {+ a ,rb -# c ,~ .d , + e ~ f,÷g 5-h , }

— scribed , Here we state the inferred resul ts as
fo llows . The infe rred tree grammar is to de— and grammar rules P
scr ibe the boundaries of the image segments. The
pr imit ive s for those patte rns are : S -

~ ~ 

5 3 S -‘ 3 S 3 S -~

A 1 A2 A 1 A6 A2 A 7

IH
a t e

+ A + e A ., c
, \

b /f / A
1 

A 1 

c 

A2 

A2 ÷ 

Al 

d

- A 1 A2 A 1 A2

A 1 + f A2 g
1~ 

c—..g .d-— _ / \ / \
J_J A 1 A2 A 1 A2

d \ h ~~ 
A 3 A 4 A 5 

A2 
A 1 A2

and the window size is chosen as 8x8 array of pix— A~ A4 A5els . The positive samples are those patterns
star t ing from a pr imi t ive  followed by at most
three branches, The negative samples are those

L



I

I
e If the context of the pattern sat is f Ies  the trans—A3 

+ A 3 
-, c~ A 3 formational gramma r, that patterns is transformed

into a smoother patte rn. By this syntactic lineA
3 

A
3 

A3 smoothIng technique , the zig—zag of lines is

A
3 

f A
3 ÷ g A

3 
÷ C A~ h smoothened .

A
3 

A
3 

A
3 

A
3 SYNTA CTI C IMA GE SE GME NTATI ON A LGORITHM

A4 
b A4 ÷ d A 4 -‘ e A syntactic approach to image segmentation

I has been investigated which invo lves two levels
A4 

A4 A4 of processing. The f i rs t  leve l, referred to as
the preprocess , pr imit ive extract ion , consists of

÷ h two steps re ferred to as (1) texture region pr imi—A4 + f A4 ÷ A4 ~ A4 t ive extract ion, and (2) boundary prim itive cx—
A4 A4 A4 A14 traction . The second leve l, which Is the

tact ic analysis , requires inference of tree gram—
+ d A

5 
÷ e mar to describe the boundaries of homogeneousA

5 
+ b A

5 regions . The grananatical infe rence procedure has
• A5 

A5 
A
5 

been described in section II. The process of
tree grammar analysis utilizes the corresponding
parser from the inferred tree grammars to processA

5 
-
~ f A

5 
-~ g A

5 
-
~ ~ A~~ ÷ 

the primitive extracted image. Then an image is
A
5 

A
5 

A
5 

A
5 segmented.

A6 
e A6 

-
~ e A7 

-
~ c A c Algorithm SISA (Syntactic image Segmentation

Algorithm )
A6 

A 1 A
7 

A 1
Preprocess: Prim itive Extraction

A 1 
-
~ e A 1 c A 1 f

I A. Texture region pr imit ive extraction
• A 1 

A 1 
A 1 Since the sate l l ite  ima ge is ve ry rich in

f texture , the simple grey leve l thresholding tech-A2 A2 ÷ d A2 
-
~ c~ A2 nique for segmentation is inadequate, TextureI I

A2 A2 A2 A2 
analysis has been studied in (5,6]. The first
part of the proposed technique is texture region

A 1 e A 1 
-
~ c A 1 

+ f primitive extraction , The texture is defined as
the over—all  or average spat ial  re lationship

A2 ÷ c A2 ÷ d A2 
-
~ ~ 

A2 ÷ f wh i ch the grey levels In images have to one an-
other , The histogram equalization techni que is

A
3 

-~ b A
3 

d A
3 

÷ e applied first to requantize the image, if there
are f in i te  grey leve ls k , the joint probabi l i ty

A3 f A 3 ÷ g A3 
-
~ c A 3 h dens ity of the pairs of grey levels that occur at

pa irs of points with distance d is computed. The
• A4 ÷ b A4 

-
~ d A4 -‘~ 

array is a k by k ma trix P(i ,j). Then a vari-
ability texture feature is calculated to measure

A4 ÷ f A4 
-
~ 

g A4 ~ A4 h the spatial relationship of the grey l evels of an
image.

A
5 

-
~ b A

5 
÷ d A

5 
÷ e V A R I A B I L I T Y  — — I I (P~~~i) )10g(1~~i~~~)k R is

i j  R RA 5 
-~ f A5 ÷ g A

5 
÷ c A

5 
÷ h the normal ization constant and k is the range con-

stant. From our expe riment on the ima ges of theA6 ~ e A 7 
-
~ c Indianapo lis area (central indiana) , th is texture

measurement character izes the major land—use
A transformational gramma r is a set of gram— classes as agricula ture , tree, old residential ,

mar rules to transform one patte rn from one form new residentia l, and water areas.
to another [1 ,3,4]. A line smoothing technique
can be designed by a transformational grammar. The window size used is llx l l pixels, Note
Here we introduce the tree t ransformational gram— that it is quite possible for some textural area
mar for line smoothing technique . The con cept of to be smaller than the window size , or the bound—
the syntact ic l ine smoothi ng technique Is as ary between diff erent textural areas li es in the

• follows : The ir regu l arIties are u sually caused operation window. In the technique , th is is
taken care of as we locate those boundaries by

by the digit izer , noisy patterns , and so forth, moving the llx ll operation window 4 pixels at a
These a re In forms such as zig—zag of the line time. Thus, the potent ial boundari es could be
patterns. The tree transformational gramma r eva l- preserve d and the spatial relationship Is still
uates the contextual Information of the patterns.
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extracted because the window size (llxl l ) was not SYNTACTIC ANALYSIS
red uced. After obtaining the texture value s for
these 4x4 unit cells , we th reshold the histogram In the areas of language compiling, computer
of texture values in the texture doma i n, and then comunication and syntactic pattern recognition ,
assign texture codes to the segments. (The his— erro r correcting parsing techniques have been
togram is made by those values from shifting the applied to remove the uncertainty and errors in
l l x l l  window 11 pixels at a time), In the cx- the process. The syntactIc analysis for Image
periments on the tes.t images, since the h istogram segmentation is a top—down tree parser w i th  the
is strongly mul timodal , It is reasonable to error correcting ability. The parser differs
assign diffe rent codes to the pixels to form the from other erPor correcting parsers in the way of
texture region primitives , grammar construction and the parsing scheme. The

overall system has an on—line syntactic tree
B. Boundary primitive extraction pa rser and an of f—l ine erro r correction mechanism.

The adva ntage of this design is the high effi—
I. Hor izontal processing: Following the tex— ciency when the input pattern is not noisy, Be—

ture region primitive extraction is the boundary cause the off—line error correction is initiated
primitive extraction. The Horizontal Process pro— and used only when the uncertainty occurs. The
cesses the “texture region primitive assigned on—line tree parser is a top—down parsing scheme
i mage” row—wise to locate the potential horizontal which accepts the correct patterns and reject the
boundary segments. The operation procedure is as incorrect patterns. The un certain patterns are
follows: let Q(I ,J) be the picture function at left for the erro r correction mechanism to cor—
location (i ,J) rect. Thus , the gramma r used is a grammar set

wh i ch does not descr ibe the error transformation.
Step 1. Start with Q(I ,J) as reference. The error correction mechanism is a top—down

error correct ion scheme , also i s  the gramma r
Step 2. Compare Q(i ,J) wi th Q(I ,J+i). If the parser . The top—down error correction is designed

distance s smaller than a specified because in parsing tree languages , the partially
value , a “ze ro” is set on Q(I ,J) and constructed tree conveys much usable information
Q ( I ,J+l). Then Q(I ,J) and Q(I ,J+2) are about what should appear next in the structure.
compared. If the distance is greater This lnformation is not as readily available in
than or equal to the specified value . A the bottom—up pars ing. The bottom—up method
“one” is set for Q(I ,J+2) as a potential cannot easi ly  use the global context (like all
boundary pr imit ive . Then the same p ro— incomplete branches), and will have to rely on
cess Is applied with Q(l,i+3) as the the local context immediately surrounding the
reference, erro r pixels . The inputs for this top—down tree

• parser are the tree languages , which have been
• Step 3. When this process is operated to the encoded as tree linked lists , (shown in the sec—

rightmos t of the row the Q(I+l ,J) is the tion of syntactic line smoothing technique) [4)and
reference and Step 2 is applied until the tree grammars. The tree grammars are in the
all the rows are processed, data structures of grammar table  wh ich i s shown

as fol lows :
The I dea of this process is to t rea t the

image matrix as independent rows. After this pro— For a t ree gramma r G
~ 

(V ,r,P,S),
cess the potentia l vertical boundaries of the
image are detected. The reason for comparing V — {S,V 1, V2...V ,t 1, t2,...t ,4)

• Q(I,J) and Q(I ,J+2)(when Q(I ,J+i)—0) in Step 2, is n m

because the reference must be kept In the same V T — 
~~~~~~~~~~~~~operation. If instead of comparing Q(I ,J) and

Q( I ,J+2), the Q(I ,J+1) and Q(I ,J+2) are compared . r(t
1) — k 1,. .,, r(t  ) — k , r (4 )  = k0• The reference is shifted , thus none of the bound— Tn m

• ary primitive s will be detected. P — S 4 and so forth.

• 2. Vertical processing: The Vertical Process Vl...Vkis in the same manner as the Horizontal one except
• that it processes the image col umn—wise to locate the maximum value of (k .. .k ) is assumed to be k ,the potential horizontal boundary segments. 1 m

then each rule of tree gramma r is const r ucted as
3. Logic integration : The result of hori— follows :

zontal process is defined as H and the result of
vert ical process Is defined as V In the Boolean T I  N{ T I,))~~~~~~~~~1
al gebra. 

~~~~ ~~ 
~~~ ~~ ~ defined as R(H V) 

~.Vt .I~~ .1 _____

R (H ,v) — H+V. •,r .fl, rIe . • g,, 1Ic ‘0. ., V~ — I. rn’~a~ Wd •

• V I V2 V 3
4. Syntact ic line smoothing: A tree trans— ~~~~~~~~~~~~~~~~~~~~~

format lonal grammar is designed to reduce i rreg— 
~~ ,

~~~. . p, 
~,

..•

u lari ties and smooth the patterns. The gram— r i—i- , i
matica l inference scheme has been described in L I ‘I I ‘ I 

deta il In sect ion II. [4] .

_ _
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There are three stacks used in the algorithm OBJECT DETECTION BY A SYNTACTIC METHOD
STACK 1 for input sentence , STACK 2 for grammar
tab le , and STACK 3 for backtrack parsing in the The syntactic method for object detection
error correction mechanism. The algorithm of the consists of the pr imitive extraction p rocess and
top—down tree parser w ith erro r correction ab i l i t y  syntactic analysis. The pr imit ive ex t rac t ion
is as follows : process consists of region prImitIve extraction

and boundary pr imit ive extraction. The pr imit ive
Algorithm TPEC: (Tree Parser with Error Correction) extraction process is similar to the one in the

syntact ic image segmentat ion algorithm. If the
input: Tree grammar G — (V ,r,P,S ) and tree lang— image is not rich in texture , the region prim i—
uage of input window tive extraction process just measure the mean

vectors of the image instead of texture features.
Output : Error corrected sentence. In this case the computer processing is extremely

fast. For the tactical targe t detection, the
Algor ithm: VARIABIL ITY texture measurement of section III is

still to be the techn i que.
(I) if TERMINAL 

~ 4 go to step 16
The syntactic analysis requires the infer—

(2) if FLAG (TERMINAL) — 0 go to step 16 ence of the tree gramma r which generates the
(FLAG equals no. of branches) boundaries of the objects of interest. The prim-

itive extracted image is processed by the tree
(3) Q ÷ TERMINAL parser which is constructed by the set of inferred

tree grammars. Thus the object is detected from
(4) STACK 3 4- Q, STACK 1 ‘- LINK 3(Q), the scene.

STACK 1 ÷ LINK 2(Q) STACK I + LINK 1 (Q).
(LINK 3, L I N K  2, LINK 1 , are the three EXPERIMENTAL RESULTS
pointers of the tree structure of the
Input pattern). The syntactic methods for image segmentation

(5) Y I satisfies FLAG (~~ — N(T(S(l))) where IBM 360/67 mult i-user time sharing computer at
and object detection have been implemented on the

Q = (T(S(1))) go through following steps the Laboratory for Applications of Remotely Sens-
6 — II until a successful parse. ing (LARS). The experiments have been conducted

on different LANDSPVT, aerophotographlc , and in-
(6) STACK 2 ~ P3 

(T(S(I))), STACK 2 ~ P2 frared images.
(T(s(I))) STACK 2 ÷ P1 (T(S(I))) 1. LANDSAT images. Fig, 1 (a) is a LANDSAT

(7) If STACK 1 Is empty, go to 17 image over the indi ana area . The syntactic image
segmentation result is shown in Fi g. 1 (b). The

(8) Q~~- STACK 1 , FLAG (Q) — K area is 88x88 image. This area has been classi-
fied by maximum—likelihood poin t by point classi—

• 
(9) if STACK 2 Is empty, go to step 16 f ier. The comparIson of segmentation result and

• classification resul t [4), shows that the syn—
(10) R 4- STACK 2 tactic image segmentation is quite successful.

Al so, the computer processing time of the syn—
(11) V T(R) , If T(k) = Q and a l l  “1” have not tactic method is only 63 seconds. But the c lass i—

been tested go to step 5 fIcation technique takes much longer CPU time
than the competitor.

(12) V 1(R), If T(R) ~ Q, then Q STACK 3,
FLAG (Q) — K—l go to step 4, pa rse the 2. Aerophotographic Images. For the purpose
combinations of selection K-I branches of showing that this method also works for aero—
un t i l  a successful pa rse achieve d then photographic images , the experiments on aerophoto-

go to step 13. graphIc images have also been conducted. The
image is Fig. 2(a). The image segmentation result

(13) If LINK 3 (Q) — LINK 2 (Q) = LINK 1 (Q) = by syntactic method is shown in Fi g, 2(b).
then go to step 7 (

~ end marker fo r
image window edge). 3. Infrare d images, The objec t de tec t ion of

• army vehicles by syntactic method has been lm—
(14) If FLAG (Q) — 0, then delete Q, plemented and the experiments on infra red images

Q~~ STACK 3, 
FLAG (Q) — K— I go to step 4. has been conducted. Fig. 3 (a) is the Infra red

Image of a battle fIeld scene. FI g. 3(b) is the
(15) go to step 4 object detection result by the syntactic method.

The object is successfully detected which is a
(16) reject input sentence truck. Fig, 4(a) is another infrared image,

Fig. 4 (b) is the object detection result and the
(17) error corrected sentence (pattern ) target is  a l so  detected.

achieved .

• •
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CONCLUSIONS AND REMARKS

In summary , the experiments have been con-
ducted on d ifferent images obtained from satel—
l i te  and aircrafts .  The results of syntactic
image segmentat ion co mpares favorably accura te as
those from statistical classification techniques.
A lso another advantage is that the computer pro-
cess ing time of the syntactic method is much
l ess than tha t assoc ia ted wi th the c l a s s i f i c a t ion
techn ique.

Fig. 1(a) Satelli te Image of Indiana area.
it has been observed from simulation and

experiments tha t the proposed syntactic technique ‘ ‘ j ’ ~” ’~’~.
segmen ts the small areas of textura l areas as 1 I:::
wel l  as larger ones in the image. The syntactic I, • ... method for object detection contributes to the .,.}.,,
mi l i tary reconnaissance, biomedIca l diagnos is , i i
and industrial automation Accompanied with the I I I
Syntax—Directed Method (7] , this technique con— I I .
tributes to the automation of image understanding 

~
.,
.‘ ...~, I
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Fi g. 3(a) Infrared image of tactical target
scene.

Fig. 3(b) Object detection result by the
syntactic method on Fig. 3(a).

Fi g. 4(a) Infra red image of tactica i target
scene.

FIg. 4 (b) Object detection result by the
syntactic method on Fig. 4(a).

. . - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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A BOTTOM UP IMAGE SEGMENTOR *

Guy Coleman
Harry Andrews

Im age Processing Institute
University of Southern California
Los Angeles, California, 90007

Thi s effort is directed towards a method of We will return to this important aspect shortly.
automatically segmenting imagery. The method The next box in the figure is the clustering algo-
so far developed is autonomou s and reasonably rithm which is a simplified modification of the
fast. A very general block diagram and some traditional Isodata routine , Here a fixed number
preliminary results are shown in figures 1 through of clusters, K, is assumed and the data is sorted
8. In the clustering technique, the only under- in N dimensional vector space so that the cluster
lying a priori assumption is that homogeneous means do not change upon further sorting under
clusters in N space are desirable; and the search, the constraint that the within cluster distance of
discovery , and description -.f  these homogeneous data points to the cluster mean is minimum.
clusters Is a useful output. Clearly, if these Thus if 3

~~k is the mean of the k~~ cluster and x kclusters correspond to regions of interest in our is sorted to belong to the cluster set (C~,J ,  then
imagery, then we have confidence in the possi-
bility of devising discriminating functions for sub- K
sequent segmentation. Such techniques for learn- ~ Z d( 

~~~~
, 

~ ?k )
ing of the intrinsic (or lack thereof) homogeneous k = 1 X k 

C ICk  I
cluster parameters have come to be known as

is minimum, This algorithm is known to converge“unsupervised cluster selection via feature rejec- to K different cluster mean vecotrs rn k upon thetion ”. The numerical processes used in these proper sorting of the data. Once converged, it ismethodologies are best described as in figure l. now possible to feedback this information, i. e.In viewing ~ ie figure, certain similarities are
immecL . V e~ y obvious with respect to traditional ~~k and !k ~ (C k)  membership information to

the Bhattacharyya (out) calculator to computemathtV~ .~s ’ cal pattern recognition and supervised 
those features which will provide tighter or better

~earnink .  ~fan selects the transducer sensing clustering. Thus for the n~~ feature, we havethe iinag.. fr.—n a vendor , applies his ingenuity to
come up w~t~ hopefully relevant features and un-
doubtedly has selected too many such features B (Ck, ~~~~ n) = log 

*(01~~h 1) 
+ 

7
j
2 (U) 

+which are probably correlated and which , there-
fore, could profit from subsequent decorrelation 0~~(~ ) 0~ (n) )
and feature selection for both equipment minimi-

2zation and noisy or irrelevant feature rejection. 

+ 
(m k (11) - m

3 
(n) )

The next phase of the cluster selection rou - 2 2
tine has a Bhattecharyya computation which makes 0k (n) + 0~ (n)
one at a time (oaat) measurements on each feature
(dimension) individually with a feedback input to for the usefulness of the n~~ feature In separa-
provide interative power in the selection process. ting cluster Ck from C~ . For K cinitere we have

k k
* This research was supported by the Advanced 

B (n) = ~ E B (Ck’ Cj , i i )Research Projects Agency of the Department of k >
Defense and was monitored by the Wright Patter-
son Air Force Base under Contract F-33615-76-
C-1203 ARPA order no, 3119.
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However , the clustering phase (Isodata) may be discarded and the number of desirablerequired a priori knowledge of the number of features retained will be the minimum necessary.clusters , K, prior to Iteration. Naturally in In other words, the decorrej ation prevents re-an unsupervised environment one does not have tention of several good but highly correlatedthis information, and as such , one must develop features.
a best cluster definition, which is the objective
of the last phase of the algorithm. This phase A preliminary clustering is performed towill feedback the value, K , to the clustering evaluate the features for their usefulness inphase and will monitor the success of sub- segmenting the scene. Tin evaluation is based onsequent clustering results based upon the the pairwise average Bhattacharyya distance.number of clusters K and the feature selection Those features which are least useful are dis-process in trying to define more homogeneous carded and the clustering is performed again.clusters. Thi s final stage bases its decision
for the best cluster upon the measure of within The clustering algorithm is performed forcluster scatter (variance) with the between 2 , 3, 4, . . .  clusters. At each number of clusters,cluster scatter or variance. Let the product of the between and within cluster

2 K 
2 scatter average is comp~ited. The algorithm

°
~~ 

(K) = E 
~ 

(
~~k - is stopped when this product reaches a maximum.

The number of clusters and the cluster meansk = 
C 

are forwarded to the segmentation phase of the2
and 0

b (K) represents the between cluster algorithm and the image is segmented,
variance

2 K 
2 Some preliminary results of this algorithm(K) = E (mk 

- are shown on the following pages. The segmen-
k I tations have been subjected to pseudo-coloring

to improve the visibility of the different segments.where is the mean of all the data taken as one
cluster only. Usin~~ a~ (K) and 0b

2 (K) we can The first set of pictures resulted from usingcompute 0~~ (K) 0b (K) and observe the following several variations of the basic procedures on anproperty. For K = 1, (1. e. only 1 cluster),  then armored personnel carrier (APC). The first setall data falls into that clus ter and there is no bet- of APC pictures , called “12 Non-Reducedween cluster variance. Therefore 
Correlated Features” is the result of clustering2 2 the 12 ori ginal features. These features are~~ 0b (1) = 0 
considered very preliminary and were used toAt ±e other extreme when every data point is a permit development of the clustering algorithmcluster Itself (K = Maximum) we have no within and to verify the ability of the algorithm to re.cluster variation and ject poor features. The algorithm rejected

2 2 eight of the 12 features based on the pairwise
~ 

(max) 0 
average Bhattacharyya distance evaluated at the

0w 
~~~~~~ 

b 2 
picture labeled “Best Number of RegionsBecause both 0w and 1

~b > 0 in the range
1 ~ K ~ max. ,2 we kno~ by the mean value 

The data was reclustered, producing thetheorem that o
~~ 

(K) °b (K) must have at least second set of pictures labeled “Best Number ofone peak or maximum as a function of K. And Region s” on the page labeled “ 4  Reducedat this maximum we will have a balance between Correlated Features” is the end product of thewithin cluster variation and between cluster algorithm, having separated the vehicle fromvariation - Returning to the picture in figure 1 the background. The bushes in the top of thewe see that the one image shown is a 256 x 256 , 
scene represent errors, that is , they wereeight bit monochrome image. Features such as classified as being the same as the vehicle.bri ghtness and texture are computed at every

pixel location in the scene. The output of the The next series of APC pictures is labeledfeature computation is a 225 x 225 map of vectors “12 Non-Reduced Decorrelated Features ”.where the components of the vectors are the These images are the result of clustering thevalues of the features at the appropriate points 12 features produced by the multi-dimensionalin the scene and the size reduction is due to (Karhunen-Lo eve ) rotation of the 12 originalwindow effects at the scene edges. The next features . Except for the pseudo-color effects ,step is to p er form a multi-dimensional (Karhunen- these Images appear quite similar to theLoeve ) rotation of the data such that the new “12 Non-Reduced Correlated Features ”. Thisfeatures are a linear combination of the old is so because rotation of the coordinate axesfeatures , but are statistically uncorrelated, This should not affect  clustering.step is performed so tha t undesirable features

~
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The pairwise average Bhattacharyya dis- The best number of regions was two in this
tances for the rotated features were evaluated at case. It can be observed that more errors were
the best number of regions (eight in this case) made in this segmentation than in previous ones
and clustering was performed on the above average due to the enormous reduction in dimension that
features, in this case four. The results of this has taken place.
procedure are shown In the series of images titled
“4 Reduced Decorrelated Features”. The final The second series of pictures is the result of
result is shown in the image titled “Best Number segmenting a color picture of a house. The lea-
of Regions , ” in this case three regions. tures used are derived from the red , green and

blue color planes of the image and there are a
The pairwise average Bhattacharyya dis- total of 15 (five per color plane). The first pic-

tances for the 12 rotated features were such that ture (two segments) was decided to be the beat
the average for one feature was substantially segmentation based on all 15 features. The
higher than any of the others. Accordingly, this additional segmentations are the result of per-
feature alone was used to perform clustering. mitting the algorithm to continue segmenting
The results of this are shown in the final series beyond the best number of clusters.
of images titled “Single Best Decorrelated
Feature”.
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focal
FEATURE J plane implementation

COMPUTATION J features are bri ghtu es.,
texture, etc.

DECORRELATE J makes features independent
REDUNDANT FEATURES L(can be optional )

rremove S optional
FEATURE REDUCTION J features not contributing

1 to good clustering

L~’~ 
be optional )

CLUSTERDqG r~ ds inherent home-

IDENTiFY 
-

~~ 
geneou . regions of the

BEST ~ 
~~ima~ e automatically

OF CLUSTERS
TO STOP SEG-
MENTATION routp~. regions of common

SEGMENTATION .4 homogeneity to a constant

L~
0b0r

(see following page.)
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7 REGIONS 8 REGIONS

9 REGIONS 10 REGIONS
(BEST NUMBER OF
REGIONS)

FIGURE 2. 12 NON RE DUCED CORRELATED FEATURES
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2 REGIONS 3 REGIONS
(BEST NUMBER
OF REGIONS)

I

4 REGIONS 5 REGIONS

FIGURE 3. 4 REDUCED CORRELATED FEATURES

_ _ _ _ _ _ _ _  

—~- - --~



1

50

6 REGIONS 7 REGIONS

8 REGIONS 9 REGIONS
(BEST NUMBER
OF REGIONS)

TI clJ~’.E 1. 12 NON REDUCED DECOR.RELATED FEATURES
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2 REGIONS 3 REGIONS
(BEEF NUMBER
OF REGIONS)

4 REGIONS S REGIONS

FIGURE 5. 4 REDUCED DECORRELATED FEATURES

_______  _________________________
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2 REGIONS 3 REGIONS
(BEST NUMBER
OF REGIONS)

4 REGIONS 5 REGIONS

FIGURE 6. SINGLE BEST DECOB.REL&TED FEATURE

_ _ _ _  _ _ _
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(a) House Original (b) 2 Region s (Best Number
of Regions)

(c) 3 Regions (d) 4 Regions

I
(e) 5 Regions (f) 6 Regions

Figure 7. Segmentation of House Picture. 
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,(g) 7 Region s (h) 8 Region s

(1) 9 Regions (j) 10 Regions

(k) 11 Regions (1) 12 Regions

Figure 8, Segmentation of House Picture,
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*A COMPARISON OF SOME SEGMENTATION TECHN IQUES

Ramakant Nevatia
Keith Price

Image Processing Institute and Computer Science Department
University of Southern California

Los Angeles, California 90007

ABST RACT In this paper , results of processing four
selected, black and white pictures using the twoTwo approaches to image segmentation are classes of techniques are presented that lead toedge based or region based. Results using the some expected conclusions about their suitabi-two types of techniques on pictures of varying lity for different tasks. The edge based tech-complexity, such as a single object viewed at niquc is that developed at University ofclose range and an aeri al picture, are present- Southern California [ 1-2], and the region baseded, Both methods are lirrdted at the current technique is that of Ohlander [3], modified bystate of development. However, each approach K. Price [4] , and developed at Carnegie -is better suited to particular structures in a 
~leUon University.picture. Edge techniques are likely to be more

suited for extraction of the linear features such A clustering segmentation scheme that may
as roads, while the region methods perform be viewed as a generalization of the Ohlander
better for segmentation of the large, uniform, technique has been developed by H. Andrews
and irregular area.. It is concluded that an and G. Coleman at USC [5] . However, this
image understanding system should exploit the technique is in early stage s of development
strengths of each to achieve better results than and results of this processing are not shown.
obtainabl e when each approach is used alone.

SEGMENTATION TECHNIQUES
INTRODUCTION A brief review of the segmentation tech-

niques used is provided here.
Segmentation is, of course, a key component

in the Image Understanding process. The a) An Edge Based Method - In this method, a
numerous segmentation techniques may be viewed local edge operator is applied to an image
as being either edge based or region based, The first. The resulting edges are then linkpd in

• edge based techniques start by detect on of local straight line segments and only segments of a
discontinuities in some attribute, suc~1 as bright - minimum length or above are preserved (for
ness, of an image and att empt to c~...~struct details see [1]). It is hypothesized that such
object boundaries from them, The region based segments usually correspond to the desired
techniques attempt to find areas in the image over boundaries.
which one or more attributes are constant, The linking method is independent of the

It may be that in some sense the two tech- edge operator used. However , the final per-
niques are trying to compute similar functions formance is obviously determined by the output
and that they should be capabl e of achieving of the local edge operator, We have used a
similar performance. However, at the present Hueckel edge detector in previous experiments.
state of development of these methods , one or Thi s edge detector is believed to have superior
the other technique may be more successful on performance to many simpler edge detectors,
certain kinds of Images, This is a subject of but it Is not always effective in presence of
active discussion among researchers in the texture. A simple edge detector, which consists
field , but we are unaware of any comparative of convolving an image with elongated edge masks
studies, in various directions and choosing the maximum
__________________ was developed and found to perform well (fo r
*This research was supported by the Advanced details, see [2] ). This edge detector has
Researc h Projects Agency of the Department of been used In results presented later.
Defense and was monitored by the Wri ght
Patterson Air Force Base under Contract b) A Region Based Method - Ohlander segmenter

F-.336 15-76-C-1203, operates by computing histograms of various 
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image att ributes and segmenting the image into indicated by boundaries between regions or not
region s with a certain range of values of an located at all. The edge method detects many
attribute. The attribute with the best separation of the roads in figure 4 which are not indicated
(a bimodel distribution in the histogram) is by the regions method,
chosen for segmentation. Originally, the method (d) The more complex part. of the aerial pictureswas developed for color images. We have used
only black and white images here and only the are not adequately analyzed by either technique,

for example the lower part of the river or theintensity attribute was used, 
suburban areas in fi gure 3, The main difficulty

This technique is recursively applied to the seems to be due to presence of texture and fLue
segmented regions until regions become too detail.
small or cannot be further segmented according
to extablished criteria of histogram separations. CONCLUSIONS
Regions smaller than a selected size are

Interestingly, the two methods performignored. Therefore, long thin regions which 
similarly on large areas of the tested image..are broken Into several smaller regions may

be lost. However, specific structures are handled better
with one or the other. The clear implication
is that a complete Image Understanding systemEXPERIMENTAL RESULTS
should utilize both depenthi~g on its goals. A

The four test images are shown in figures straight forward method is ~~ use a specific
1(a) through 4(a). Figures 1(b) through 4(b ) technique to locate particula “~ .s of objects.
show the edges detected in the four images.

The two segmentation techniques may alsoHueckel edge detector was used for fi gures 2(b);
be able to reinforce each other at the imageF the edge detector described in section 2 was

used for the others. Figures 1(c) through 4(c) level, for example using regions to bridge
show the regions detected by the Ohlander- gaps in boundary segments or to use boundary
Price segmenter, segments to sub-divide regions. We have not

examined such interaction in depth.
Following are some abservations on the

relative merits of the two approaches. ACKNOWLEDGEMENTS
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is against a similar background.

4. K. Price, “Change Detection and Analysis
(c) In the more complex aerial pictures, the in Multi-Spectral Images’ , Ph. D. Thesis,
edge technique seems to extract linear features, Carnegie-Mellon University, Pittsburgh,
such as roads , with ease, whereas the region Pennsylvania, December 1976.
method does the same for parts of image that
are homogeneous, for example the lakes in 5. G. Coleman and H. Andrews, “A
figure 3. Note that the wider roads are Bottom Up Image Segmentor”, Record of
extracted as separate regions in both figures ARPA Image Understanding Workshop,
3(c) &4(c~but that the other roads may only be Minneapolis , MInnesota , April 1977,

(this volume).
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~p.

(a) Digitized Image (a) Dig itized Image

(b) Detected Edges (b) Detected Edges

(c) Segmented Regions (c) Segmented Regions

F Figure 1, A Truck Figure 2. An AIrplane 
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REGION EXTRACTION USING CONVERGENT EVIDENCE

D. L. Milgram

Computer Science Ctr., Univ. of Maryland , College Pk ,MD20742

ABSTRACT

Scenes consisting of spatially compa~~ ation processes designed to color in re-
regions which contrast with their back- gion interiors. Other region growing
grou~~1s can be segmented by extracting con- schemes use high boundary values to guide
nected components of above threshold values the merging and splitting of regions de-
whose borders match the positions of edges, fined by gray level similarity. For a
Edge/border coincidence thus defines a kind survey of region growing , see (4].
of “optimal thresholding” , since for any One can criticize threshold selec—object we can choose the threshold which 

tion schemes on a number of grounds formaximizes the coincidence. This
illustrates how the redundancy of differ— attempting to associate a single thres-

hold with a (fixed size) window which ,ent information sources aids segmentation . af ter all , bears no intrinsic relation-
ship to the objects in the scene. First
of all , if the window contains no object
then attempting to threshold is dangerous ,1. INTRODUCTION since above-threshold noise regions may

Image segmentation is an important often produce probable looking “objects” .
task of scene analysis. When an image has Secondly, if more than one object is pre-
been partitioned into regions , properties sent in the window then a single threshold
of the individual regions can be studied will not suffice. Thirdly , if an object
and the regions themselves can be de— overlaps several windows then there may
scribed and , perhaps , identified. Ex- be no consistent representation of an
amples where segmentation is important in— object (i.e., no representation using a
d ude mi l i ta ry  target detection, cell single threshold) . Attempts to divide
classification, and parts inspection , the scene up into overlapping windows, so

• When the regions to be studied are that objects of maximal size are

compact, and correspond to physical en- guaranteed to lie completely within a

tities, they are called “blobs ” or single window , answer this last objection
at the cost of greatly increased overhead.“objects” . These regions are often 
Chow and Icaneko (5] attempted to overcomecharacterized by well-defined borders and these d i f f icul t ies  by assigning thresholdsthe contrast of an interior texture with a
to a coarse grid of points and interpolab~surrounding texture. Not all scenes con-

form to this rudimentary model. For ex- ing threshold values at intermediate
points. In any case, the size of themnal-ample, cloud masses often lack well-defir~d lest thresholdable reg ion depends on theoutlines, and many objects consist of a window size, the coarseness of the grid ,multitude of subparts with differing tex— and the type of statistical test used totures. Nonetheless , the model is applic- determine if a region is thresholdable.able to a variety of diverse imaging Sn- 
One would prefer , however , to be able tovironments , including therma l imagery
segment a small region regardless of theanalysis, chromosome c lass i f icat ion, and clutter and noise beyond its borders.industrial automation.

Another objection to pure threshold-Thresholding and edge detection as in-
dividual aids to segmentation are well de- ing is the presence of noise regions in

addition to object regions. Noise re—scribed in the literature. The recent
book by Rosenfeld and Kak ( 11 discus3es gions may be difficult to distinguish

when based on size , shape or gray levelmany such segmentation methods. The corn- features. The broader and higher thebined use of interior and edge information valleys of the gray level histogram , thehas also been investigated . The use of an 
more likely that the noise regions willedge detection operation to suggest a SUI. t 
be extensive and numerous ,able threshold for an image is discussed

in (2]. Edge detection was employed by A final objection concerns the de-
Gupta and Wintz (3 1 to initialize propag- sign of optimal thresholding techniques 
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in which the optimality is based on a object windows along with a number of
statistical model of the gray level popu- possible thresholds for each, Note that
lation. In situations where an object it is not at all obvious which threshold
contrasts strongly with the background , is best. However when the edge map
there may be a number of thresholds at (Figure lb) is overlaid on the thres-
which the object appears well defined . As holded picture (Figure lc), we have much
the threshold decreases through this better guidance, Figure ld shows the
acceptable range , each object exemplar is object reg ion extracted from each window
contained within a slightly larger one. using the method to be described .
Thus although the exemplars may each look
reasonable, the optimality criterion for 2.1 Image Smoothing
the thresholding does not necessarily 

When random noise affects an image ,choose a “best” exemplar. This is because it has been shown that smoothing can re-the optimality condition was based on the duce the misclassification errorwhole window rather than on the component associated with thresholding [6] . Ourcorresponding to the object. concern is that misclassified interior
For these reasons , we are studying points will be interpreted as border

segmentation methods which do not require points. Since it is unlikely that any
a commitment to a single threshold in significant edge values exist at these
arbitrarily chosen regions of an image. points , this would tend to reduce the de—

This paper describes a method for gree of edge/border point match. Smooth-

segmenting scenes containing thresholdable ing , by making image regions more homo-
geneous , improves the classification per—objects (i.e., objects that can reasonably formance of thresholding .be extracted from the image by threshold-

ing). The method uses thresholding as a In our work , we have preferred median
means of discovering candidate object re— filtering to mean filtering as a smooth—
gions. Candidates are then accepted or ing operator, since median filtering
rejected based on the coincidence of an eliminates small local variations but does
edge map with the region boundary . The not blur edges. The size of the smooth-
surviv ing object reg ions are compared with ing window is determined not only by the
the survivors of earlier thresholds , and amount of noise that must be eliminated
only those that best match the edge map but also by the size of the smallest
are used to describe the actual objects in object to be extracted . A discussion of
the image . Thus , while a number of thres- the tradeoffs involved in median filter-
holds are used, only the one defining the ing appeared in (7]. A comparison of
greatest coincidence of thresholded re— median filtering with mean filtering for
gion border and (thinned) edge is deemed two neighborhood sizes is illustrated in
valid for a particular region . This Figure 2.
method can be considered as def in ing  a
best exemplar for each object region. 2.2 Edge Detection and Thinning

F
The smoothed image is the one tha t2. METHOD is thresholded in later steps . The edge

The basic concept of matching the map step may use either the smoothed
border points of cohnected components with image or the raw image . The former seems
corresponding edge values has been men- more reasonable since smoothing can be
tioned already . However, the implementa— treated as a preprocessing step . In
tion of this idea provides an opportunity either case , the choice of edge detector
to vary a number of parameters which can is guided by a knowledge of the edge
be tuned to respond to different image en- population of the image. A very sensi-
vironments. In this section we present a tive edge detector , e.g., the 2x2 Roberts
discussion of the method and its applica- cross gradient, responds to noise edges
tion to a data base of Forward-Looking and can miss slowly rising edges. It is
Inf raRed (FLIR)  images, therefore l ikely to allow many noise com-

The algorithm may be divided into ponent borders to match the noise edges

several steps as follows : image smoothing; produced. Furthermore , because the
Roberts gradient does not respond well toextraction of an edge mask by edge detec-

tion and thinning ; thresholding; forming ramplike or fuzzy edges, the border/edge
match for true object regions will beconnected components; and obj ect validi ty low. It is apparent that an edge detec-checking . For a given picture , smoothing tor with good noise rejection is needed .and edge map extraction need be done only This can be achieved by using detectorsonce; whereas thresholding and the sub- based on differences of adjacent local

sequent steps are performed over a range averages. The choice of edge detectorof thresholds sufficient to extract any for the FLIR data base was discussed inobjects in the picture . [8] . At that  time , a detector de f inc~ by
Figure 1 il lustrates the basic con- the maximum absolute value of hor izoz tal

• cepts involved . Figure Ia shows several and vertical differences of 4x4 averages
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was chosen. Since then, a simpler detect— alarm rate is a function of the input
or which utilizes diagonal differences as window size, it is more reasonable to use
well has been designed and is used in this the window size to predict a upper bound. —

study. The actual rate is a function of the num-

Most edge detectors (with the excep— ber of thresholds and the positions of the

tion of the Hueckel operator) have thresholds in the overall gray level

appreciable response in the vicinity of an histogram . Experiments (113 in choosing

edge. For the purposes of the border/edge thresholds corresponding to minimum “busy-

match step , the edge response must be ness ” indicate that such thresholds gen—

thinned to an “edge map ” . While parallel , erally correspond to valleys in bimodal

iterated thinning methods exist for histograms . If, in general, a maximum

shrinking narrow regions [9], one can de— busyness threshold corresponds to a
sign a one-pass algorithm using non- histogram mode, and if high busyness at a

maximum suppression that utilizes the threshold predicts large numbers of

directional information available from the above—threshold components, then one may
edge detector. By keeping track of the conclude that certain thresholds are worse

edge direction (resolved to 450 intervals) , than others in producing false alarms —-
the non—maximum suppression can be applied specif ica l ly, those at or adjacent to
in the direction normal to the edge re— peaks in the histogram . The quantitative

sponse , i.e., across the edge. As can be aspect of these assertions is currently

seen , the resulting edge maps provide under active investigation .
reasonable “line drawings” of the images.
Davis [10] discusses the likelihood that 2.4 Object Validation
non—maximum suppression will locate the It is well known that the connected
point at which the real—world edge occurs , components of a binary image can be iden-

tified in a single pass. During the
2.3 Thresholding pass , many statistics pertaining to each

The selection of gray levels at which component can be gathered , including ar~’a,
to threshold gives rise to several prob— central moments, shape and gray level

lems: features. Of particular interest are
features relating to the validity of the

a) The omission of a threshold from components; that is, whether the extract-
consideration increases the probability ed region really corresponds to an object
of missing extractable regions. in the scene. If one considers validity

b) The greater the number of thres— checking to be a classif ication process ,

holds considered, the greater the false then one can compute a large number of

alarm rate. potential features and , using standard
techniques, come up with a discriminant

c) The speed of the algorithm is function. We have taken the point of
approximately linear in the number of view that a good discriminant may be
thresholds used , obtained by designating heuristic con-

The probability of missing an object region ditions which an object must satisfy and
due to the omission of a single threshold then assigning one or more features to

is the product of the probability that the each heuristic. We have established two

scene contains an object region and the heuristics to be of value among the many

probability that the object region is dis- 
possible . One is that objects should be

cernible (by the algori thm) at exactly the “well—defined” , i . e . ,  have discernible
omitted threshold . Although knowledge of borders . Note that not all real-world

the a priori probability is dependent on a regions satisfy this constraint. For

model for the scene (which does not at pre— example , in LM4DSAT scenes , forests ,
sent exist), experiments have demonstrated urban areas and clouds can blend irto

that an object region which is discernible their surrounds with no discernible edge.

at all by the algorithm can be extracted The second heuristic is that an object’s

over a range of thresholds —— dependent, interior should “contrast” with its
of course , on the steepness and homo- surround . In this study , contrast is

geneity of the edge region bordering the based on gray level difference . However ,

object. Noise regions , on the other hand , other local features including texture

do not tend to persist over a range of measures are worth considering as defining
gray level thresholds. This tradeoff may object interior. (This might require the

therefore be posed as follows: By samplin use of texture edge detectors as in (12]).

at every kth gray level, we reduce the These two heuristics are fairly indepen—

workload to a fraction (1/k) without dent, as will be demonstrated .

• appreciably increasing the false dismissal The two heuristics just described
ra te; however , we lose some redundancy in were embodied in the algorit hm as two
the extracted data which would help us features.”Well definedness ” of a region
discriminate object regions from false was measured by the percentage of border
alarms . points which correspond spatially to

While one may conclude that the false (match)  actual edge points in the edge 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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map. “Contrast” was measured by the of descriptors. In our work , the goal
absolute difference of average gray level was to classify the object regions which
between the border region of the component passed through the filter. However , one
and its interior, Figure 3 shows a can imagine using such regions to create
scatter plot of these two features for the a “map ” of a scene to be used for match—
regions extracted from a set of ~-~ndows . ing or tracking terrain views, for change
A reasonable discriminant appears to be: detection , or for “planning ” in the sense
match > .5 and contrast > .6 — —  i.e., at of artificial intelligence ,
least 50% of the border matches the edge
map, and the contrast is at least .6 gray 2.6 Algorithm
levels (out of 64). Note that neither In summary , the algorithm for region
feature is by itself reliable enough to extraction consists of the following
discriminate noise regions from object re- steps:
gions. Optimal discriminants may be com-
puted based on several models . Regardless 1. Smooth the image , if necessary
of the particular model chosen , the dis— (to promote clean thresholding).
criminant value can be interpreted as a 2. Extract a thinned edge picture .
“score ” for the component. Components
with very low scores are discarded as pure 3. Determine a gray level range for
noise, In practice, we have used the thresholding.
match measure as a score for objects which 4. For each gray level in the range:
were above the pure noise threshold.

a. Threshold the smoothed image.
The score is important in comparing

(nested) object regions corresponding to b. Label all connected regions
the same object. When an object is of above-threshold points .
thresholdable at gray levels t1 

> t 2 >’  ‘ ‘>t,,~, c. For each connected region :
• this gives rise to k connected components , i, Compute the percentage

• C~ ~~
Ct ~~~~~~~2 tk 

Since each c~ repre- of border points which
coinc ide with signifi—

sents the same object , we call each an cant thinned edge points.
• “exemplar” . In general , we wish to select

a single exemplar as the best representa- ii. Compute the contrast of

• tive of an object. The score provides a the region with the
criterion for selecting among exemplars. background .
Thus , one could choose the exemplar C~ iii . Classify the region as

J object/non—object based
with the highest score. It is not always on the size , edge match
easy , however , to determine the nested and contrast.
sequence {c

~ 
}. In particular, if an 

5. Construct the canonical tree fori
• object thresholdable at gray level t is the set of object regions based

contained within an object thresholdable on containment.
at gray level t ’  < t , them ~.egardles s of 6. Prune the containment tree by
the comparative differences between the eliminating adjacent nodes which• two scores, we would want to retain C and are too s imi lar .
Ce,. This situation can be handled

by assuming that nested components whose 3. CONCLUSIONS
areas are sufficiently d i f fe rent (say , 50% This paper has investigated the prob-
change in size) correspond to different lem of image segmentation for scenes con-
(although nested) objects. In thermal sisting of object regions contrasting
images , this  mi ght correspond to a warm with a background . We have shown that
vehicle with a hot engine compartment , or evidence from multiple sources can be

• to a vehicle on an asphalt road . In the combined to extract object regions while
first example , the relationship is based rejecting noise components . The extent
on “a part of” ; in the second , it is based to which the different sources conform
on occlusion . The results of applying the defines a figure of merit for the region
algorithm to a moderate-size data base are which can be used to select a best ex-
illustrated in Figure 4. emplar for a object.

2.5 Subsequent Processing BIBLIOGRAPHY
The foregoing algorithmic steps serve 1. A. Rosenfeld and A. C. Kak , Digital

as a filter which passes object regions Picture processing, Acadeliiic Press,
that are deemed to be valid and that New York , 1976.
correspond to different objects. Each
object region can be described variously 2. J. S. Weszka , R. N. Nagel and A.
as a set of points with gray levels, as a Rosenfeld , A Threshold Selection

-
• sequence of border points , or as a vector
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Figure lb. Edge map (thresholded to in-
crease visibility .) 
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Figure 2a. Noisy square .

Figure 2b. Noisy tank.

Figure lc. Edge map of Figure lb overlaid~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 2c. Large tank .

Figure 2. Object regions produced as a
result of image smoothing .
(Ligh ter object regions are
displayed within darker object
regions .)

Row 1: Raw window , edge map, object re—
gions.

Row 2: 3x3 median filtered window , edge
Figure Id. Object reg ions extracted by the map , object regions ; 3x3 mean

algorithm, filtered window , edge map , object
reg ions.

Row 3 : 5x5 median f i l tered window , edge
map , object regions; 5x5 mean
filtered window , edge map , object
regions.
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• Figure 2d. Small tank ,

Figure 4a .  16 tanks (the negative frame
was not processed).

Figure 2e, APC.

...
.
. 

. Figure 4b. Edge maps (thresholded fora .  
. visibility)

a.

• .aa.~~I~_ : 
—~~~~—-~~ Figure 4c. Object regions.

f,.. :.~, ,:.,, ,~,,. ,:.~, .:,.~ .:� ,.,,,

Figure 3. Scatter diagram plotting edge/
border match against  contrast
for a set of noise reçions Figure 4. Object region extraction .- (plotted as periods) and object

- regions (plotted as hash marks). 
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SEGMENTATION OF FLIR IMAGES BY PIXEL CLASSIFICATION

Durga P. Panda*

Computer Science Ctr., Univ . of Maryland , College Pk ,MD20742

ABSTRACT

Image segmentation can be treated as a certain percentile , p , of the maximum
a point—wise classification problem. This possible edge value . The quantity p is
classification may be done by measuring a taken to be 95; the heuristics leading to
set of features at each point and defining this selection are discussed in detail in
a decision surface in the feature space, [1, 2].
This report presents some experiments in Segmentation by valley seeking in thesegmenting FLIR images by using the gray
level and the edge value at each point as joint histogram involves finding a

“bottommost” curve that separates onefeatures.
node from the others. As described in
[1, 2], two such curves are possible.
These two curves have a few common points
at low edge values and then diverge from1. INTRODUCTION each other as edge value increases. Thus,

Two earlier reports (1, 2) have for a given edge value , one of the curves,
analyzed the joint histogram of gray level which we shall call “L” , has gray levels
and edge value of FLIR images and have smaller than or equal to those on the
suggested possible segmentation procedures other curve, which we call “R” . Either
based on the analysis. The analysis in— of these curves may be used as a decision
dicated that ~.he histogram is trimodal , surface in the two-dimensional space of
two of the modes occurring at zero edge gray level and edge value , for classify—
value and the third one occurring at some ing the image points into the object and
higher edge value and at a gray level be- background classes. The segmentation
tween those of the first two. Some of the procedure using valleys such as the curve
segmentation procedures suggested in the L or the curve R will be called the “V-

• two reports (1, 23 are: thresholding method” . In particular , the method using• based on the histogram of gray levels the curve R as the decision surface will
having low edge values; thresholding based be called the “yR-method” , and the method

• on the histogram for high edge values; and based on the curve L will be called the
valley seeking in the joint histogram . “VL—method” .
(These methods are defined below.) The The goal of the work reported herepresent paper investigates the success of was to investigate the usefulness of thethese methods in segmenting FLIR images above methods as segmentation proceduresinto backgrounds and objects. for FLIR images, and not necessarily to

• The segmentation procedure based on automate these methods . For this reason
the histogram of points having low edge the val’ey selections were done manually.
values (which will be referred to here as

• the “L-method”) finds the valley between 2. EXPERIMENTS
the modes in the histogram and uses the Sixteen windows were selected from

• location of that valley as the gray level the “NVL data base” (see [2]) as testthreshold for the image. The segmentation images. The images were 64x64 in size andprocedure based on the histogram of points had grayscales of 0 to 63. Figure Iahaving high edge values is referred to as
the “H-method” ; it uses as threshold the shows the 16 images. The identifiers of

these images , as given in (2], are shownconditional mean or the conditional mode
of all pixels with edge value greater than in Figure lb.

Figure 2 shows the gray level histo-
grams of the images in Figure 1. Most 01
these histograms do not possess strongThe support of the U. S. army Night Vision bimodality . Classically , images can beLaboratory under Contract DAAG -53-76C—0 13 8
segmented using thresholds located at(ARPA Order 3206) is gratefully acknowledg- valley bottoms on their histograms . Ined , as is the help of Mrs. Shelly Rowe. 
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locating valleys on the histograms of concept that an image may contain pixels
Figure 2, consideration was given to the belonging to three different classes , the
fact that the object points are much background , the object, and the object
brighter than the background points and boundary (see [2]). Pixels belonging to
they are a small fraction of the total the object boundary class are expected to
number of points in the image. Thus, a surround , in the image domain , the pixels
valley near the middle of the grayscale belonging to the object class; and are ex—
range occupied by the histogram was given pected to have higher edge values than
less weight , or discarded as spurious, those of the object or the background
compared to a valley much less prominent pixels , in general. Since the curve R
but occurring near the light end of the separates the object pixels from both the
grayscale range. The results of seg- background pixels and boundary pixels ,
menting the images of Figure 1 using using the curve R as the decision sur face
valleys found in this way on the histo- will exclude the boundary points from the
grams in Figure 2 are shown in Figure 3. segmented image. Comparison of Figure 6
As this f i gure shows , only a few of the with Figure 7a indicates that this is in-
objects are extracted satisfactorily, deed true in general. However , for the

images containing very small and faint
Figure 4 shows the joint (gray level, objects, such as 57T , 58R , and 34A ,. theedge value) histograms of the same images. yR—method yields relatively noise-free

The horizontal direction represents gray segments as compared to the H—method .level and the vertical direction repre— Also impressive is the result of the VR-
sents edge value . The brightness at each method for the last two non—target images ,point in a joint histogram represents the 38N and 56N , where the extracted segmentsnumber of pixels having the corresponding are empty . The two—dimensional histograms
gray level nd edge value. The edge oper- of these images display no valley and
ator used i. the 4x4 DIFF operator of hence , in contrast with the H-method , theHayes and Rosenfeld [3]. The general extracted segments are empty . Conversely,structure of these joint histograms in- the curve L separates the background ‘1
dicates that for low edge values there is pixels from both the objects and the
a clearly distinct valley (dark region) object boundaries . Thus using the curve
separating a strong mode , corresponding to L as the decision surface will include in
the background region , from a weak mode , the extracted segments the boundary points
corresponding to the object region , that the yR-method excluded. As Figure 7b

Figure 5 shows the results of seg— shows , the extracted segments are larger
mentation by the L—method , in which the in the case of the VL—method than they are
gray level at the valley of the histogram in the case of the VR—method .
for edge value zero (a common point of Figure 8 shows the result of using
the curves L or R) is chosen as a thres- a hybrid of the yR-method , the VL-method ,
hold. This method is more successful at and the H—method as the segmentation pro-• extracting the objects, but images with cedure , This method classifies the pixels
faint objects have very small extracted using a decision surface constructed as
segments . In image 26R the histogram for follows. For a given edge value , beginn—zero edge value had no valley, so tha t the ing with the edge value zero, if the two
L—method yielded no extracted segment for curves L and R have a common gray level
this image. then that (gray level , edge value) pair is

Figure 6 shows the result of segment- selected as a point on the decision sur—
ing the test images by the H-method , as face. As the edge value is increased , the
was done in [ 2 ] .  For many of the test two curves will begin to depart from each
images the objects are well segmented by other at some point. For this and all
this method . However , for the images with higher edge values , the threshold used is
extremely faint objects the output of the the same as the threshold of the H—method.
H-method is very noisy. The most undesir- In other words , for low edge values the

• able results occur for the two images 38N points on the decision surface are chosen
and 56N , where even though the images con- by the V-method , and for higher edge
tam no object, the H-method classifies values the points are chosen by the H—
some regions as objects. This is due to method . Some of the extracted segments
the fact that the threshold found by the that were very small in the VL-method are
H—method is always within the graysca~.e 

relatively large in the ‘JR-method .
• occupied by the image and hence it will An alternative to the VH—method

always yield some segmented regions in tIre would be to classify the pixels by the
image regardless of whether or not the straight line S joining the threshold due
image contains an object. to the H—method at the 95th percentile

Figure 7a shows the test images seg- edge value with the threshold due to the
mented by the yR-method , while Fiqure 7b L-method at zero edge value . Figure 9
shows similar results for the VL—method . shows the results of segmenting the FLIR
It may be pointed out here that the v- images by this S-method . This method
method of segmentation is based on the does not follow the actual valley bottom
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for the low edge values, and the results tation would be desirable ,
are therefore somewhat inferior to those
obtained using the ‘JR-method. The WI- REFERENCES

methods tested in 
best result of all the 1, Algorithms and hardware technology

for image recognition, Quarterly
3. DISCUSSION M~D CONCLUSIONS DARPA Report for the period I May -

31 July, 1976, Computer Science Cen—
It is evident that the two-dimension- ter, University of Maryland , College

al histogram enables us to extract better Park,  MD.
objects from FLIR images than those ex-
tracted using the one-dimensional gray 2.  Algorithms and hardware technology
level histogram. Several different de- for image recognition , Semi-Annual
cision surfaces can be used in the two- Report for the period 1 May - 31
dimensional feature space, to give varied October , 1976 , Computer Science Cen-
degrees of success in segmentation. Among ter, University of Maryland , College
all the methods considered , the WI—method Park , MD.
seems to give the best results (Figure 8 ) .
A heuristic explanation for this is the 3.  K.  C. Hayes , Jr. and A. Rosenfeld ,

— following. The background and the object Efficient edge detectors and applica-
pixels away from the object boundary have tions, Tech . Rep No. 207, Computer
low edge values, and the histogran for Science Center , University of Mary—
these pixels seems to have a distinct bi- land , College Park , MD, November
modality, Thus the valley between the two 1972.
modes successfully classifies such pixels
into the background class and the object
:lass. The pixels near the boundary, how-

• ever , have higher edge values and do not
have this bimodality . Since some of these
points are from the object class and some
from the background class, the mean value

• of such points may be expected to classify
• the pixels successfully . The VH-method of

classification is effectively just that -—

the low edge value points on the decision
curve are at the valleys of the correspond—
ing histograms, and the high edge va lue
points on the curve are at the mean of the

• high edge value pixels.

The two—dimensional histograms some-
times resemble truncated or “folded over ”
mixtures of two multi-variate normal dis-
tributions with unequal covariances. The
folding over, which occurs at the edge
value zero, may be due to the fact that
the edge value at each pixel is defined
as an absolute value of certain differ-
ences measured at that pixel. It is con-
ceivable that if somehow appropriate
signs, positive or negative, were incor-
porated into the edge value at each pixel ,
the resultant distribution would be an
“unfolded” mixture of two multi-variate
normal distributions with unequal co-
variances. In such a case the maximum-
likelihood decision surface is quadratic .
Unfor tunate ly ,  how to incorporate the
appropriate sign into the edge value at a
pixel is not obvious at present,

While the use of the edge value as an
additional feature has certainly improved
the results of pixel classification , it is
obvious that the edge value is not the only
feature that can be used for this purpose.
It is conceivable that there exist other
local properties that perform as well as
or better than the edge value. Further
studies of this approach to image segmen- 

--~~~~~~~~~~~ -— — . •--- -• - •
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(a )

6T l5T 34T 57T Figure 3. The image segments extracted
by finding valleys in the gray3R 26R 47R 58R level histograms of Figure 2.

2lA 34A 48A 57A
2N 20N 38N 56N

(b)

Figure 1. The 16 test images.

(a) The images.
(b) The image names, The

s u f f i x e s  T , R, A , and N
indicate that the object
in the image is a tank, a
truck , an APC , or a “non—
target” , respectively.

. 

Figure 4. The two-dimensional histog-~imsof the test images.

Figure 2. The gray level histograms of
the test images.
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Figure 5. The test images segmented by (a )
the L-method.

(b)

Figure 6. The test images segmented by Figure 7. The test images segmented by
the H-method. the VR- and the VL-methods .

a) The yR-method .
b) The VL-method. 

-~~— — --~~~~~ ~~~ — ~~~~~~~~~~~~~~~~~~~~~ ~~~
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Figure 8. The test images segmented by
the VH-method.

Figure 9. The test images segmented by
the S-method.
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IMAGE SEGMENTA T ION USING TEXTURE AND GRAY LEV EL

S.G , Can ton and O,R. Mitchell
Purdue Un ivers ity

W, Lafayette , Ind Iana ~47 907

INTRODUCTION th is Image are shown in Fig. 3. Three threshold
values are shown as three Intensities in the

The segmentation of an Image can be a cr it ical pi cture (low , medium and high w i th  the extra high
first step In Image information extraction (1]. omitted). The horizontal and vert ical extrema
Once an image is segmented , each section can be have been combined.
classified using statistical or syntactic methods, B. Turning Texture to Gray Level
However, the segmentation of images has developed
Into one of the more complex tasks in image pro— The next stage In our  approach is to count the
cessing. This paper presents a hierarch i cal ap— number of each size extrema in a window centered
proach to segmentation using texture and gray about each point . This results In a gray level
leve l measurements , This method has shown promis— picture representation of a texture property. For
ing preliminary results, example , using a 40x40 window and three thresholds ,

the three pictures In Figs. 4,5 and 6 were pro—
THE BASIC TEXTURE MEASURE duced. Note that the forest region of the original

has few sma l l  ex t reme , many medium extrema , and
Several app roaches to the use of Image tex quite a few large extrema. The original image

ture information I n image analysis have recently was also averaged using the same ‘+0x40 window to
been developed (2 ,3] . Howeve r. thes techniques produce a fourth p icture , shown in Fig, 7, repre—
have generally been applied to region classifica— senting the average gray level.
tion following segmentation and not to the seg-
mentation problem itself . In our approach to SEGMENTATION
represent texture , vario us sizes of local extrema
in the logarithm of the Image are sumed wi th in  a We now have four p ictures (or one 4—dimens ion—
window surrounding each point, a) Image) to be used for segmentation . Each

picture element Is considered to be a 4—dimensional
A. Local Extrema vector. To accomplish segmentation , a starting
In the work reported here , local extreme we re point in each separate segmen t of the image Is

found by combining horizontal and vertical one— found, This is accomplished by finding loca l cx—
dimensional operations. The one—dimensional oper— trema In each of the four windowed pictures of
atlon scans a line of data and assigns a point to section II , In this operation a point must be a
be a local maximum (minimum) of size T if It Is local extreme In both the horizontal and vertical

• the largest (smallest) value occurring in the directions to be chosen, This prevents the
vicinity on the line before the values drop (rise) location of starting points in transitional areas
to an amount T below (above) this maximum (minimum) between two regions, The starting point candi-
value (41. An example is shown in Fig, I. The dates are then compared using a four—dimensIonal
local extreme of size 3 and size 1 are marked, distance measure. Each group of similar candi—
This process Is equivalent to detecting the cx— dates , based on a threshold  cri ter ion , are merged
t reme following a hysteresis  smoothing operation to produce an average vector representing that
using a smoothing of 1/2. group. The result ing average vectors form the

starting points for the segmentation . The
The logarithm operation is f i rst performed on distance measure used Indicates an approximate

the Image prior to the extrema detection , The use percentage diffe rence in each dimension :
of this texture measure Is a crude attempt to simu-
la te the human vi sual system ’s response to a tex 4 lA ~ ’B 1~tune pattern. For example , each maximum In Fig, 1 0 — E 

A + +wou ld appear as a br i gh t point to a human observer 1— 1 B 1 K

even though one of them Is below a minimum which
would appear dark to an observer, i.e., the local where A is the intensity of one point in the Image
surround af fec ts pe rce i ved b ri ghtness much more and B is another. This measure Is similar to
than the actual gray leve l (5]. gray level contrast. The constant K allows for

decreasing the we i ght of a dimension In a region
A sample Image is shown in Fig, 2. ThIs is a where the total number of extreme is smell and ,

256x256 8—bi t black and white aerial scene of a therefore the percentage difference is unreliable.
• mi li tary simulation area in New York State. The For a window size of 40x40 we used a K 25.

local extreme measured in the logarithm version of

-- -•- - -—-  -
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Once the fInal set of starting points Is de— provide a spatial context within which the second
termined , each point in the image , regardless of leve l may operate. The boundar i es obtained are
its spatial location , Is ass igned to the closest shown on the original image in Fig. 14. The
start ing point using the distance measure de— brighte r boundaries are those obtained in the
scr ibed above. This normally results In fair ly f irst level and those less bri ght are f rom the
large contiguous regions due to the nature of the second leve l process.
ear l ier windowing ope rations, Resu lts using this
technique on the image and intermedIate steps pre— TECHNIQUE PARAMETER SENSITIVITY
sented In FIgs. 2 through 7 are shown In Figs. 8
and 9. FIg. 8 results when a large distance There are seve ra l thresholds wh ich mus t be
threshold criterion for similar starting point set to make this technique operative: extrema
vectors is used. The add itional region shown In sizes , window sizes , and d istance s im i l a r i t y
FIg. 9 was obta ined by t ighten ing thIs threshold, criter ia, However , if the input data is fa i r ly
The major regIons extracted from the original homogeneous (e.g., aerial photographs from a
Image are forest and two diffe rent grassy areas, constant altitude ) the al gorithm performs wel l

using fixed parameters. The algorithm Is theo—
A s im ple by—product of this segmentation Is retically Invariant to Illumination level changes

the region boundaries. A simple processing pro— and magnification If the window sizes used are
cedure on the segmentation output produces the appropriate to the size regIons to be detected.
boundary image shown in Fig. 10. These bound-
aries are then s hown overla id on the orIgInal ALGOR ITHM IMPLEMENTATION
images in Fig. 11.

The one—d imensional extreme detection algo—
HIERARCH ICAL SEGMENTATION nithm is easily implemented in a line—at—a—time

d ig i ta l  processor, The picture is present ly
The effects of the w indow size used in crc- transposed and the process repeated to obtain the

ating the ave raged p ictures In this procedure are vertica l extreme. It is feasible to implemen t a
ve ry Important. The result of averaging an two—dimensiona l version of this algorithm using
Image with a very large wIndow can be expected to CCD transversal filter technology which wou ld
smear all detail from the Image, On the other output extreme sequentially In real time and
hand , averaging wi th a small window yields a eliminate the time consuming transposition.
b lurred Image retaining much detail and perhaps
result ing on ly in the loss of troublesome noise, The smoothing operation s described are im—
In the subsequent propos ition these effects of plementable di gitally, opt ically, or w ith CCD
the window size are exploited in a hierarchical devices. Thus the ove rall segmentation system
approach to the segmentat ion problem, cou ld  be implemented for very fast image process-

ing rates.
• Using a comparat ively large window 40x40

pixels , the 2 region pictures shown In FIg. 12 SEGMENTATION OF TA CTICAL TARGETS IN FLIR IMAGERY
were obtained. By examining the ave raged
p ictures and the results , it Is read i ly seen that A second type of image data and processing
the fIne detail has been lost , but the major requirement w i l l  now be presented. The fo rward
regions of the image have been preserve d and in— looking infrared (FL I R) imagery as shown In
dicated. This f i rst  pass ove r the image then has FIg, 15 was obtained from Honeywell as part of
produced the major regIons, our jo Int project In improving Fu R tactical

target detection and recognit ion. One method of
in the second leve l of the process , the orig— good prom ise In recognition of such objects in

Inal extrema are averaged over a smaller window , vo lves measuring parameters on projections
20x20 p ixels. This smal ler window Is only 25% through the object in varIous directions, This
of the s ize of the larger one, The start ing type of structure recognition method wes developed
points are also regenerated using this newly av— by New Mexico State Un i versity for missile track—

• eraged pictures to form the 4—dimensional vectors, ing at the WhIte Sands Missile Range [6]. It has
In addi tion to these Inputs , the second leve l pro— the advantage that the hIgh amount of noise and

-
• cess also utilizes the results of the first level, distortion present in thermal imagery is reduced

by the integrating process of the projections.
The regions indica ted by the first level , are

separate ly subdivided by the second leve l process Typical projection data is shown In Fig. 16.
in the same manner as the first leve l divided the This shows projections through eIght angles of
ent ire image. The second l eve l process holds the FIg. 15(b). The circles and numbers at the

• major regIons firmly In place , searching within bottom of each projection Indicate the locatIons
each region for finer detail, of Intervals containing 10% of the total area

above the background level, Ratios of these
An example of this second leve l segmentation numbers can then be used In classification of the

is shown in Fig. 13. Using the 2 region output object. Howeve r, this method fails when the
of the f i r s t leve l , the right hand regIon is background leve l is comparable or hi gher than the

• subdivided into three diffe rent regions, The target intensities. For this reason the target
deta il preserved at this leve l is indeed much must be segmented from the background before the

• fi ner than produced at the first level. The projections are done.
l imitatIon s imposed by the fIrst leve l , however,

~~— ~~~-~~~~~~~-- —~~~~~~~~~--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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I t is usually a relatively easy task to locate
at least one portIon of a potentIal target by 

~looking for intensitIes sI gn ifIcantly dIffe rent
from the background . For ac t ive vehic les  a motor f
“hot spot” Is usually prominent. The segmenta—
tion proposed here assume s that the target has
been located and only  Its extent must be
determIned.

To accomp l i s h  target segmen tat ion, backg round ‘

statistics are gathered ove r an annular region
outside the target region. Then the statistics
of the target region are compared to those of
the background and poInts not comparable to those
I n the background are labeled as target points. FI5~~~% 

~~~~~~~~~~~ ::~z ~~~~a.d •I~. 3 •r. nd iCa ~.d.

For some targets , in tens ity leve l alon e can
be used as shown in Fig. 17. However , In
others it is help fu l to Include neighborhood
var inace Information as we ll as gray leve l or
the joint statistics of adjacent points such as
was done In Fl 9. 18. Some targets such as
Fig. 15(d) , dId not respond to any simple sta-
tistical measures, In this case the target gray
level , var ianc e, and 2nd order density functions
were compr.rable In the background and target.
However, the max—m m texture method described
In tb’s paper did show promise. Shown In FIg. 19
are the vertica l extreme associated with Fig.
15(d). FI g, 20 shows the 10*10 average over
extreme of medI um level. The averaged extreme
picture was used In conjunction with the orIginal
picture to form a 2—dimensIona l data vector at
each point. The points In the Image which now
are not conmion with the background are IndIcated
I n FIg. 21. Note that the tank Is almost com-
pletely segmented.
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• Fig, 4. Average low level extreme using a Fig, 7, Average gray level using a ‘+0x4040x4O window , window centered at each point.

FIg. 5. Average  med ium level extreme using Fig. 8. Results of the segmentat ion procedure
a ‘+0x40 window centered at each point, w i th  loose threshold cr i ter ion on

start ing points

Fig. 9, Results of the segmentation procedure
Fig. 6. Average high leve l extreme using a w i th  a tight cr i ter ion on s tar t ing

‘+Ox ’+O window centered at each point,  point generation .

- • - -- -
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Fi g, 10. Image boundaries produced from the Fig. 13. Output from the second leve l process
segmentation output, showing s ubd iv id ion of the maj . region,

Fig, 14 . Results overlaid on the orig . picture.Fig. 11 . Image boundaries over la id  on the
or ig inal  image .

~~~i In
Fig. 1 5(a )  Typ ica l  FLIR data. (9 lx9 l)  6—b i t

Fi g. 12, Two region image used as input to the pi cture elements.
second leve l of the hle rarchial process • Tank from close range overhead. 
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Fig. 15(b) Same tank as in (a) but from Fig. 16. Projections through 8 angles of
further away. FIg. 15 (b).

.~~~~~~~~~~
-

FIg. 17. Segmentation of Fig. 15(b) using back—
FIg, 15(c) Typical FLIR data (91*9 1) 6— bi t  ground intensi ty information only,

picture elements, Truck

‘
- .~~~I- —--—-

‘s . ‘c ~~i 
‘
~~ aI ‘~ i~ data ‘~‘ ix9 1)  6—bit 

Fig. 18. Targe t segmentation of Fi g, 15(c)- ‘~~ using jo int s t a t i s t i c s  of adjacent
points in the background.



I

i~~~~~~~~~~~~~~~~~~~~~~~
FIg. 19. VertIcal max—m m extre me for

Fi g. 15(d).

- Fig. 20. Ave rage ove r a l Ox l O  w in dow of the
medium leve l extreme in Fig. 19.

Fig. 21 . Targe t segmentation of FIg , 15(d)
• us Ing in tensi t y  and texture of the

background.
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SYMBOLIC ANALYSIS OF IMAGES USING PROTOTYPE SIMILARITY

R. Touchberry and R. Larson

HONEYWELL INC.
Systems and Research

Minneapolis , Minnesota 55413
ABSTRACT linking similar symbols. The relational graphs

yield the simple image primitives
The prototype similarity transformation is a i - the set of symbols linked only to themethod for transforming an image into a set of sym- target segments,bols . each of which represents the relationship of B - the set of symbols linked only to thea local region to other parts of the image. The non-target segments, andrelationships that have been investigated are a E - the set of symbols linked to both elementsclass of similarity relations invariant under tex-

ture changes. Spatial information was not used to By this association with declared target anddetermine similarity . Previous work showed that non-target (or background) segments of the image,the images were recognizable when the intensities the symbols thus acquire meanings: T Target and• were rep laced by the symbols. The current work B Background. The E symbol, since it assoc iatesdeals with the problem of simp lifying the symbol with both target and background is given the mean-set in such a way that desired components of the
image (e.g., target objects, edges, background ) are ing : E edge. Replacing the numerical values in

each segment with these symbols gives the trans-revealed. A way is given to infer a transformation- formed image.al grammar from the (non-spatial) symbolic content
of the image. The purpose of this granimar is to The preceding example illustrates the kindsgenerate a simplified symbol set wherein targets , of operations used in the similarity transformation.background areas and separating boundaries are each The significant points , which are expanded indenoted by a separate symbol. The method has been sections II and III are:successful in segmenting FLIR imagery.

• The numerical values (intensities ) are
used only in testing similarity of pairs

I. INTRODUCTION of segments.
• The segments are coded to show how they

Symbolic image processing begins by extracting are similar to other segments.
symbolic primitives from the numeric representation • Semantic cues, In the form of designating
of the image and then working in the symbol space. a known target segment and a known back-
Ihe goal of symbolic image processing is to deter- ground segment, are used to guide the
mine the content of the image from the structures final symbol generation.
revealed by the primitives. The problems in • The spatial arrangement of the segments
symbolic processing are: does not enter into the symbol generation.

• to extract the primitives , and The symbols, which are the image primitives
• to discover appropriate structural rela- for later analysis of the image content, are thustionships among the primitives , derived by a process that uses a minimum number of

Image primitives are usually defined in terms of a priori conditions. The utility of the method
required spatial properties of the numeric values, can be evaluated by how well It helps in determin-
Thus , there is a hierarchy of primitives ranging ing the content of the image.
from edges and contours at the low level to trees
and houses at the high level , ordered by the com- The detailed discussion in Section III de-
plexity of the spatial properties. scribes the general procedure that generates symbols

representing different kinds of target , background
The method discussed in this paper approaches and edge regions In one image. Section IV shows

the primitive extraction problem from a different the results of using the prototype similarity trans-
direction. A collection of symbols is derived from formation to segment FLIR imagery Into target ,
the image by means of a similarity relation defined background and edge regions.
on pairs of image segments. Spatial and textural
proper ties of the image a re delib era tely excl uded I I . PROTOT YPE SIMILARITY TRANSFORMATION
from consideration during the symbol generation
process. Image primitives are then derived from The basic symbols used to represent the image
the symbols, starting with a k,icwn target segment are generated from the Image intensity values by
and a known non-target segment. Relational graphs the following method . The entire image Is parti-
are constructed on each of the known segments by tioned into 4 pd x 4 pel cells. A similarity
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relation (a symmetric, reflexive binary relation) Index set notation will be used to simplif y
is defined for pairs of cells and used to select the following discussion. Let J = {2,j1, ..., j~ }.
a set of ‘listinguished cells called prototypes*. Also define Lii Li ~ L~. Lii- = Li ~ etc.The defining properties of the prototypes are
(1) they are mutually dissimilar and (2) all non-
prototype cells are similar to at least one proto— If L13 ~ • then the prototypes in L1~ are l i ke
type. Each cell is then transformed by replacing both ~the numerical intensities with the list of proto— 1 and P~. These are designated as edges
types that are similar to the cell. The prototype between the target and whatever P,~ may represent.li sts are ca l l e d “la bels ” and are the basic symbols Let Kc J be those index values j for which L~j1 •used by the prototype similarity method. The only *intensity characteristics retained in the labels and let a =~~~ L1j. Define L1 = L1 — a. The
are those used to define the similarity relation , prototypes in L are the ones that are l ike thebut this is enough information to allow comparing
the cells by comparing their labels. designated target but are not edges. We designate

these as targets.
III. INFERRI NG THE TRANSFORMATIONAL GRAI’UIAR

The prototypes in L1~ are not like the declar-

two step process: them. Continuing with the idea of using semantic
The meaning of the labels is determined by a ed target and the next step is to infer meaning for

• Infer the meaning of each prototype from cues to guide the inference process, we consider
the semantic cues provided by the declar- the declared background prototype P2 and its link-
ed prototypes and the collection of labels i ng set L2. The subset L12 C L~ has already beenoccurring in the given image.

e Interpret the meaning of each label by designated as the target/background edge, leav i ng
using the meaning of it’ s cons ti tuent onl y L12 to guide the inference. Thus we attempt
prototypes. to find chains of sets L1~ that overlap and join

Inferring Prototype Meaning to L12.

The label of a cell C is a list of those proto- Let = L12types that are similar to the cel l C. When two
prototypes occur together in a label It indicates a choose i 1 such that L~1 ~ 1:1 

~ 4
relationship between them. Prototype mean ing is 1
inferred by tracing this relationship back to the form = E ’ ,j  L1~declared prototypes. For the following discussion
let P 1 be the declared target prototype and P2 be choose 12 such that L1. ~ ~

2 
~the declared background prototype. Let P3, • , ,

~~ 
P~ 

12
be the discovered prototypes. form = 

~j L~~ , etc.

Define A 1 = the set of labels that contain P1 contInuing until E~
’ 
~ Lj.~ = • for allL~ = the set of prototypes in A i.

remaining I.
L1 Is called a linking ’ set and is the set of all

prototypes related to or linked directly to proto- The prototypes In E~
’ are linked to the declared

type P1. We assume that linking sets containing background and we designate these as background.
=U Lonly one prototype have been removed and that P2 ~ Define R • • •

~~ 
i~,} then Er 

R ~• L1. The Inference proceeds as follows:

Let n 1 L1 ~ 
L At this point three different sets of proto—
2 types have been given meanings:

choose Pj , , form n2 — fl1 ,3 Lj  L1 target

choose P12 c iT2 . form — fl 2
~ j L12 , etc. a - edges

• continue unt il iT~ $ . £“ - backg round
The linking sets L1, L2~ 

L~1. .... Lj~ contain the If all prototypes are Included In these sets then
information from which prototype meanings will be the inference process stops. If not, then meanings
inferred , are inferred for the remaining prototypes by using

the edges L 11 of those L1~ 
not i~, E

r. Thus:*The similarity relation used In this work compares
two cells by comparing the ratio of means, the for i , J — R,ratio of standard deviations and the correlation
coefficient of the ordered intensities to u Ity.



-
~

80

designate Lj~ 
as target type i The details of this analysis are as follows :

Sixteen prototypes were discovered in the image.
if I ~‘ L = • for all r ~ R, Three of these (shown by the letter Z) were removedii lr because they were not linked to other prototypes.

The inference process determined that five symbolsdesignate Lj~ 
as background type 1 (T , 0, A , B , E) would describe the picture. The

mean ings for these symbols (as described in section
If L11 ~~ Lir $ 4 for some r c R . I I I )  are E - edges between the target and the back-

ground , B - background areas , T - areas like the
declared target cell, and 0, A - target-like areas

Interpreting the Labels that differed from the declared target cell.

The prototypes have the meanings given them by Figures ic and id respectively show the non-

the sets L ’, ~~, etc. Label meanings are inferred background and the background parts of the picture
(the mask is displaced 4 pels vertically for this

from the prototype meanings by the following process. display). It is noteworthy that the extracted
Each prototype P is replaced by a character denot- truck image includes the low intensity parts of the
ing the set to which it belongs : image that corresponds to the front and rear wheels.

*P ~ L1 
- Referring again to Figure lb. the declared

prototype I was at row 6 and column 13 and corres-
P ~ z r B ponds to the right door of the truck. The sides of

the truck and top of the cab are the parts of theIf: replace P with truck also marked with a T. The symbols 0 and A
P ~ a E were identified as target-like but different from

T. These appear in the locations corresponding to
P e ~~ I

~ 
or B~ . the motor and the top of the box. The E symbol is

associated mainly with the tandem real wheels.
Future studies will investigate whether target

This changes the label into a string of characters, image segmentation of this type is good enough to
The la bel ’s meaning is obtained by using a rewriting recognize targets from the symbolic image structure.
rule to reduce the string to a single character.
The rule replaces character pairs according to: Figures Za - 2d show the analysis of a full

TT+T, EE-.-E , BB-÷8, TB-.E, TE-s~T, BE-s-B 
image frame (480 x 440 pels). Figure 2a is the
original FLIR image taken from an altitude of 3500
feet. The horizon is just above the top of the

• ignoring permutations and subscripts. The rule is
applied repeatedly until only one character remains , picture. A number of unidentified far away bright

objects appear in the upper half of the picture.
The wide light band across the l ower part of theIV . RESULTS picture is a warm river. In front of this are

To use the Prototype Similarity (PS) method in scattered houses (bright) and columns of trees (dark)
a tactical application, a target detection device To analyze this picture , two target prototypes were

declared at the positions marked T (on the river)such as the Hone ’wel l Autoscreener locates the and 0 (on one of the houses). The background proto—target and points to a location in the target image.
A second image location outside of the target is type position is marked B. The results of the PS

analysis was that a total of 27 prototypes (declar—also chosen. These two image points are the seman- ed and discovered) were generated and these reducedtic cues used in the grammatical inference. The PS to four symbols T, 0, B , and E. 1, 0, and B havemethod can thus be used to extract the total target tfle declared meanings and E means edges.sub-Image or to find other similar objects in the
image. Figures 1 and 2 show the results of using Figure 2b shows the picture with all 0 cellsthe PS method in these two ways to extract objects removed (the mask is offset). This symbol not onlyfrom airborne FLIR imagery, marks the houses in the foreground and background ,

but it also delineates a large part of the river ’sFigures la - ld show the analysis of a truck
image. For this analysis the part of the frame used edge. Analysis of the image intensities suggests

that this Is a result 0f banding in the house imageIs -60 pels high and 80 pels wide. This is subdivid- and could be removed by using a texture measure ifed into non-overlapping 4 pel by 4 pel cells. One so desired , The right hand end of the river is alsotarget cell and one background cell were declared labelled with the 0 symbol . This Is due to theIn the positions shown in Figure la and the ~ combined effects of the banding and DC bias errorsmethod generates the symbolic representation shown along the scan l ines In the origina l FUR output.In Figure lb. Image intensity equalization will remove this
effec t.

• ___________ Fi gure 2c shows the locations of the 0 symbols in a
*Note that the direction of the horizonta l axis is computer listing of the symbolic image. Figure 2d
reversed In Figures lb. 2c, and 2d. shows the T symbols. These successful ly mark the

end of the river at which the I prototype was de-
clare d , but do not extend into the other end where

• — --~~~~ • _—--  
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the texture and intensity are very different. In
its present form the PS me thod uses no spat ial or
textural information. As a result the method is
sensitive to sensor caused distortion s , like the
DC bias problem in Figure 2a, that change the
quality of the imagery from point to point in the
picture. Improvements in sensors and developments
in image enhancement methods promise more uniform
quality imagery. It is also possible to decrease
the sensitivity of the PS method to these distor-
tions by including spatial analysis in the
grani-natical inference.

X Figure lc. Target parts of la.• Figure la. Original FLIR sub-image of truck.
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Figure lb. Symbolic image of truck (B—background ;
I, A , 0 - target; E - edges).

V — V

Figure 2a. Origina l FLIR image showing houses , Figure 2b. FLIR image with building-like cells
trees and river removed (The mask s offset 12 pels

horizontally).
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Figure 2c. Locations of building-like cells in the symbolic image of Figure 2a. 
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Figure 2d. Locations of river-like cells In the symbolic Image of Figure 2a.
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SYSTEM SUPPORT FOR A DISTRIBUTED IMAGE UNDERSTANDING PROGRAM

Jerome A. Feldman and Richard F. Rashid

Computer Science Department
The University of Rochester

A distributed processing system for image disk storage and high resolution raster displays)
analysis Is being developed. Some of the issues connected in a 3 MHz ring network to a Data
under consideration are : General Eclipse. The Eclipse maintains a modest-

ly large local file capacity ~— 1OO MB), hard copy
- inter-process communication and flow printing and plotting, and magnetic tape. It

control ; also provides editing and other facil i t ies to a
- programming methodology in a distri- number of local terminals , and serves as a gate-

buted environment; way between larger campus machines (360/65 and
- effective user control of simultane- KL-1O), the Arpanet (as a VDH), and our local

ous processes ; network.
— protocol s for image analysis.

From the beginning of our project we wanted
An overview of the effort and i ts curren t state the central Eclipse to perform three distinct
will be discussed , tasks. First of all we wanted to provide our

local network of minicomputers with access to the
greater storage capacity ‘and I/O capability of
the Eclipse. We also needed a consistent conru-

1. INTRODUCTION nication link between any point in our total
system (local minis or campus computers) and any

In the past two years we have mounted a sig- other point. Lastly we wanted to provide users
nificant effort to develop the tools and expertise (whether they were connected via terminals to
necessary for the construction of large distribu- the Eclipse , time-sharing users on the KL-1O , or
ted systems. This researc h has taken three stand-alone users of our minis) with intelligent
directions: access to all avai lable faci l i t ies, including the

various resources of the Arpanet.
(1) the design and implementation of an

operating system based on inter-process To satisfy these goals we designed and imple—
communication (RIG); mented a virtual memory operating system called

“Aleph” for our central Ecl ipse. A leph is based
(2) the development of a programming method- on the concept of inter-process comunication.

ology for dlstl’ibuted computing (PIllS); The operating system kernel provides only the
necessary framework for interrupt handling ,

(3) the construction of software facilities virtual memory management , scheduling and inter-
allowing researchers to manage and inter- process comunication. All other system functions
act with a number of simultaneous pro- have been allocated to a large number of indepen-
cesses executing on different processors dent coninunicating processes each wi th Its own
in a network (NEXUS). virtual address space.

These projects have already reached the stage in Aleph ’ s inter-process comunicatlon facili-
which they are being routinely used by researchers ties were based on ideas that have been proposed
and students and we have begun to turn our atten- by many (see for example [Walden , 72] ),  as well
tion to a specific problem domain, that of distri - as on our own practical experience with the
buted Image analysis. Stanford Hand-Eye system [Feldman & Sproull , 71].

Each Alep h process may have up to 255 full-duplex
2. RIG--ROCHESTER’S INTELLIGENT GATEWAY “ports” for communication wi th other processes.

System primitives allow processes to receive
RIG has provided us with a great deal of messages from all , one , or a set of ports. When

practical ex per i ence In the construction and more than one message Is wa iti ng on a set of
behavior of distributed systems. The RIG system ports , the receiving process may asslqn priorities
consists of four 64KW minicomputers (Intended which order the messages it will receive. If

• primarily for stand—alone use and possessing local desired , a process may specif y that it wi l l

- —‘--,~•--—-——~~~~~~~ -‘--- —,-.~~~~~ .—-—— -• — -.--- -- —-— —.--
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receive only messages coming from a particular it answers at least some of the questions regard-
sender. All messages are queued; but a measure ing the construction of distributed programs in
of flow control is achieved by restricting the image analysis and other areas.
size of a port queue. Whet a process sends a
message to a process-port whose queue is full , 3. NEXUS--THE PROGRAMMER AT THE HUB OF THE
that process is either suspended until a place is UNIVERSE
opened in the queue by the receiver or , option-
ally, the sender is notified that the system was One of the goals of RIG was that it give
unable to send the message. A fuller account can intelligent aid to a user in his access to net—
be found in [Ball et al., 76]. work resources. As a first step In that

direction a powerful gateway should allow the
Of crucial importance to our success in user to manage and interact with a number of net-

using Aleph as the RIG gateway is the fact that work processes simultaneously. NEXUS was devised
processes do not , in general , share memory or both as an example of what might be done along
variables. Because of this , they can be easily these lines and as a useful research tool in -its
accessed by other computers on our local network own right .
throug h an aliasing facility which allows external
processes to appear local to an Aleph process. NEXUS was implemented as a programming
We have devised a network communication protocol environment for our stand-alone minicomputer. It
around the same inter—process communication faci — provides inter-process, inter-machine comunica-
lities available in Aleph [Rashid, 76]. Using tion in much the same manner as Aleph. More
this protocol , any process on any machine in the importantly from the user ’s standpoint , it pro-
system may communicate with processes in the cen- vides a virtual user input/output system . An
tral Eclipse as though it were physically resi- invisible process, con trol lable throu gh spec i a l
dent. Thus al l  network machi nes have full access keys, multiplexes user input to the various run-
to Eclipse facilities. ning processes and the output of these processes

can be d i sp layed in various “windows ” of the
Interestingly enough, because all coninuni- minicomputer ’s raster display. Over 75 lines

cation is in the form of messages, there need be can be displ ayed on a screen , allowing as many
no particular importance attached to the physical as half a dozen reasonabl y-sized windows to be
location of a functional module in the system. disp layed at a time . Processes runn ing under
Part of the communication protocol includes a NEXUS communicate w~th themselves , with Eclipsesymbolic name service which provides processes processes, and through the Eclipse with the Arpa-
throughout the network with dynamic information net and local KI-lO.
about the location of functional modules in the
system. This permits the addition of a second Some of the capabilities of NEXUS include
processor to the gateway (an event which should Arpa Telnet and FTP, telnet to the campus KL-10 ,
in fact take place within the next month) without access to Eclipse f i les and I/O devices, an image
causing confusion to the rest of the system. It disp lay package , and a network file manager. An
also means that some of our more prodigious example of a typical session with NEXUS Is given
efforts in the area of intelligent resource man- in Figure 1. A similar set of capabilities,
agement , etc. can be developed in very high level although limited by the small (—25) number of
languages on our KI-lO and still be tested as an lines displayabl e on a standard CR1, has been
integral part of the RIG system . implemented for the terminal users of the central• Eclipse [Ball et al., 76].
2. PLITS-—THE PROGRAMMING LANGUAGE IN THE SKY

4. IMAGE PROTOCOLS
Following the design of RIG and in the light

of Its ongoing Impl ementation , we began work on RIG , PLITS , and NEXUS provide some of the
a project to develop a non-trivially new program- system support necessary for distributed Image
ming language for distributed computing. Despite analysis. One way in which we have used these
a decade of effort and a massive investment of tools is in  the development of a network Image
money and t ime , there has been relatively little protocol .
progress In distributed computing. Although many
low-level problems have been solved , there is The Rochester Image Protocol [Maleson ,
essentiall y no use of multipl e machines on a sin- Nablelsky and RashId , 771 exists within the RIG/
gle task. It is possible that one reason for this NEXUS framework and governs communication between
is the lack of an appropriate set of conventions image handl ing  processes in our network. It is
for programming a computation that is distri buted built around the conce pt of a structured image
among several systems . definition similar In spirit to the structured

graphics display flies of [Sproul i, 74]. This
A description of our current ideas on PLITS image data structure serves both as a common

can be found in [Feldman , 77]. A preliminary ver- language for describing images and as a uniform
sian has been running for almost a year , and Is way of specifying the display of image data on
being extended to multipl e machines and languages. various raster devices (e.g., plotting devices ,
Our experience with RIG and an Initial implementa- black & white and color variable Intensity and
tion of PLITS as an extension to the SAIL [Van- slm’ le intensity displays).
Lehn , 73] language have given us confidence that

-- 
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telnet Window
Typ. window size In lines - - 7

NEXUS 2.1 -- 4i44i26 -- 159 Pa&ss

Commend? C,S,?)iS
Show picture.
f llenemeioakl.z,v
Mat value:ZSS
Mm valuetO
K i.ngth:2~S6
Y l.ngth ~256

Command ? (I,P,Q,C,S,?)i
sor.sn ima~~ 

~ 
file natts]i t.mpl

Vss (IF) to enten~~~.inet command
• #op.n connection wltht sumax-AIM

Conneotlng...Op n (from alto ports) ,1 (to NCP posts) 7,10
Local Sooket.11642.O
foreign socket is 141520000004
Received CXRULING fr om port 6~ accepting on port 13
Open on port 13• Received CXRULING from port *S3 accepting on port 1S<191)( 131>
~TTt..~~i~~AjM Ten x 1,31.71, SUMEX-AIM ~ieo 1.5 1.50• -

~~1o~ feldman aim
JO~~ 1? ON TTY 132 28-MAR-7 1 13,39
PREVIOUS LOO1N~ 28-MAR-?? lOu ?

• ~~~~~~~ ~~~~~~~~~~~~~~~~~ - •

ReOeived NESt Net # Machine #200
Sendin g RFC ... Connection Open
slt.u

• 
~~~Ii1~Ynt1’
Received (~XR UI ..1NG from port 6 acceptl n g on port 7
Received CXRULING from port 63 accepting on port 1?

CMUlO~ 7.TS/DEC S.O6~ TTY 100 16:44t13Type ‘HfLP’ if you need it.
(ZSSX2S 1)jA
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The protocol presupposes the existence of a REFERENCES
distributed file system (supported by RIG) and
makes use of so ph isticated headers to descr ibe Ba l l , E., Feldma n , J., Low , J., Rashid , R.. and
the format of image fi les. Where user interaction Rovner , P. “RIG . Rochester ’ s Intelligent
(both keyboard and graphic) is  required, the pro- Gateway : System Overview ,” Department of
tocol also specifies a mechanism for arbitrating• Computer Science , University of Rochester, -

•

between the Input requirements of competing 1R5, April 1976. Also appeared in IEEE
processes similar In form to that used by NEXUS. Transact ions ~~ Software Engineering, Vol .

SE-2, No. 4, December 1976.
A full report on the protocol and our initial

experience with It is in preparation. Feldman , J .A. “A Progranining Methodology for
Di stributed Computing (among other things),”
Department of Computer Science, Un iversi ty
of Rochester, TR9, 1977.

Feld man , J.A . and Sproull , R .F. “System Sup port
for the Stanford Hand-Eye System,” 2nd
International Joint Conference on Art if icial
Intelligence , London , September 1971.

Maleson , J., Nab lelsky, J . and Ras hi d , R . “The
Rochester Image Protocol ,” Internal Memo,
February 1977.

Rashid , R. “The Wizard ’s Guide to RIG: Ether-
net Protocols ,” Internal Memo, October 1976.

Sproull , R.F. and Thomas, E. “A Network Graphics
Protocol ,” SIGGRAPH-ACM, Vol . 8, No. 3,
1974.

VanLehn , K .A. “SAIL User Manual , Stanford A T
Memo , AIM-2O4, July 1973.

Walden , D.C. “A System for Interprocess Communi-
cation in a Resource Sharing Computer Net-
work ,” CACM, Vol . 15, No. 4, 1972, pp. 221-
230.
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A~Y5OMATIC TMt.GTI CUMNG OM TrW. FOCAL PLANE

Thomas J. Willett
Nathan Bluzer

Westinghouse Systems Development Division, Baltimore

ABSTRACT an approximate 3 x 3 on each side.

Under contract to University of Maryland, The Median Filter , Gradient Operatot , and
Westinghouse has been implementing algorithms for Non Maximum Suppression Algorithms are calculated
use in the target cueing process on the focal for a small window which moves over the entire
plane of imaging sensors. The program is frame. The window height is 5 lines, 8 lines,
sponsored by DARPA, and monitored by the Army ’s and 7 lines of Image respectively for each of
Night Vision Laboratory . It has resulted in an the algorithms which are performed sequentiaLly.
examination of the latest advances in CCD tech— Consider, now, how these lines can be obtained
nology and led to the design of innovative - from the image.
st ructures which require very small chip areas.

We assume that the focal plane has a time
delay integration (TDI) feature such that the

We first describe a preferred set of algo— image is available one line at a time from the
rithms developed by Maryland which tentatively focal plane. The pixels within each line arrive
comprises the first portion of a cueing system . in parallel and are then shifted out serially
In general, the Median Filter acts to suppress into a serpentine delay. For the Median Filter ,
noise. The Gradient Operator extracts edges; the the serpentine delay comprises 5 Image lines.

• width of these edges is reduced by the Non— There are non—destructive taps placed strategi—
• Maximum Suppression Algorithm. cally in the serpentine such that as the 5 lines

are shifted through the serpentine they are
The Median Filter is the first algorithm per— tapped to form a 5 x 5 moving window. The same

• formed and acts to extract the median gray level sort ~f serpentine structure will be used for
from a 5 x 5 array of pixels and to place that the Gradient Operator and Non—Maximum Suppression
median value in the center of the 5 x 5. The Algorithms with 8 lines and 7 lines respectively.
median value is defined as the l3fh gray level in Since the algorithms are performed sequentially,
an ordering of the 25 gray levels by magnitude, the chip area below the focal plane is composed
counting from either end. The Median Filter acts of a 5 stage serpentine delay, a Median Filter ,
as a moving~5 x 5 window across the image in that a 8 stage serpentine delay, a Gradient Operator ,
having obtained a median value, the first column a 7 stage serpentine delay, and a Non—Maximum
is dropped and a sixth column is added with the Suppression Algorithm.
accompanying reordering to obtain a new median
value. It appears that the computation speed of

the algorithms will be in the neighborhood of
The Gradient Operator Algorithm computes edges 100 KHZ, hence a parallel organization is neces—

based on an image of me~ian values; it computes sary for a 1 megapixel/sec . data rate. Suppose
an operator, OP — max ttA—~~, IC—D~~ 

based on we divide the Pt/SO register iemediately below
• four overlapping regions A ,B,C,D each of which the focal plane into ten vertical sections each

consists of 4 x 4 pixels and are arranged in the approximately 68 pixels wide and each with its
shape of a cross. The quantities A ,B,C,D, in th. own serpentine CCD delay line. If the image is
expression, represent the sum of all sixteen 640 pixels wide , we divide the register into ten
pixels within each region. The operator OP works sections of approximately 68 pixels each to avoid
as a moving window in that the leftmost column is problems associated with calculations along the
removed from each region and the next right column edges . However if we do this segmentation to

• is added to each. Again, the operator result is achieve the data rate, there will be 20 x 68
placed in the center pixel location, shifts per column . At a clock frequency of 100

• KBZ, numerical degradation in the order of 20Z
The Gradient Operator extracts edges in either will occur , which is too high.

the horizontal or vertical direction; the Non—
Maximum Suppression Algorithm then looks in a The modulation transfer function is a
direction perpendicular to the edge for a larger function of the input signal frequency, the
gradient. If a larger value cannot be found , the frequency of shifts (clock frequency), the
edge under consideration is retained; the edge is number of shifts and the transfer efficiency.

• removed if a larger value is found. The neighbor— The more practical avenues of reduction are clock
• hood around the gradient under consideration is frequency and the in’mber of shifts; we can double

- m ~~~~~~~~
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the number of operators to 20 each, and halve the Another major block of the MFO is the
clock frequency and number of shifts to 50 KHZ sorting module in which the data elements are
and 680, respectively. This may produce an im— arranged according to size. This requires a
provememt to 10% degradation but this number bank of 32 CCD shift registers whicb are 25
would have to be confirmed experimentally. Of elements long and each row is capable of being
course this approach increases the total chip independently shifted left or right. An area of
area which is still small and the external 100 mils wide by 64 mils long is suff ic ient .
clocking circuitry. Operating at cryogenic
temperatures will probably increase the transfer Finally the area required for controlling
efficiency somewhat. Moreover, surface channel the clocks operating the sorting module is esti—
CCD ’s are suitable for this task and the advantage mated to be 100 mile by 2 mils.
of these devices is realizing the non—destructive
taps. The size required for achieving a serpentine Sununing the different component areas corn—
memory 680 elements long is 1000 square mils if prising the MFO, we arrive at an area estimate of
four phase clocking is employed. Hence for 20 100 mils x 128 mils.
columns we will require a silicon area 1000 mils
long by 20 n’ils wide. All the elements used in modeling the MFO

are based on field effect phenomena, hence we
The size of the Gradient Operator chip will expect improved performance of cryogenic temper—

be deduced by assigning real estate to each atures in accordance with experimental obser—
operation performed by the Operator. A key vations. Power requirements are less than 100
operation is the absolute subtraction module milliwatts at 100 KHZ.
(ASM) which obtains the absolute difference be-
tween two inputs and yields a charge representing Assuming that the focal plane is divided
that quantity. Each difference CCD structure into 20 columns, the geometric area for the
will nominally require a channel 1.2 mils wide; Median Filter, Gradient Operator , and associated
four input channels are needed to provide four serpentine delays, including the delay for the
charge packets, two representing IA—B I and two Non—Maximum Suppression Algorithm, is 1 inch x
representing I C—DI . The length of each ASM will 1/2 inch.
be 4 mils, a size sufficient to provide a read-
out structure necessary to drive the second
stage of the Operator. The second stage selects
which output A—B or IC—D I is the largest
gradient of the ith pixel location. Combining
the real estate requirement for the first and
second stages, we calculate a chip size of 8 mils
x 10 mils. We assume a fou r phase gate con-
struction; a smaller number of phases (which re—
quires less chip area) could be used ; however,
speed — charge handling capacity and ease of
fabrication favors four phase construction. The
structure advocated is exclusively based on MOS
FET and CCD technology. Both MOS FET and CCD
structures exhibit improved performance at
cryogenic temperatures greater than 30°1(. Fabri-
cation yields should be in the neighborhood of
50% and power consumption less than 10 milliwatts .

The Median Filter chip will operate on 25
pixels located within a moving window; provisions

• for obtaining the 25 pixels will be built into
• the CCD serpentine delay structure in the form

of non—destructive readouts. Each data element
(pixel) is assumed to have a dynamic range equiva-.
lent to a 32 level gray scale.

The size of the chip is determined primarily
by the number of pixels and gray levels. The
proposed MFO is required to operate as e moving
window device which require~ a CCD memory capable
of storing and shifting 25 data elements each of

• which is quantized within a 32 level gray scale.
A bank of CCD memory registers with 25 x 32
storage locations can be achieved by a 64 mil by
64 mil module. Included in this estiniste are
areas for incorporating output and input s tructures
to the CCD memory.
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*CCD IMAG E PROCESSING CIRCUITRY

GrahamR . Nudd

Hughes Research Laboratories, Malibu, California

ABSTRACT used to store a full  f rame , and the data f rom the
• N rows are clocked out in parallel into N para l le l

The rapid development in charge t ransfer  and processing circuits . Each circuit might pe r fo rm
MOS technology allow hi g hl y comp lex circuit func- the Sobel operator , for example , and pr ocess th e
tions to be built in a si’~gle integrated circuit data for  an entire line , with the processed outpu t
capable of operating at speeds in excess of appearing at the clock rate 

~c (which for  our cir-
10 MHz . This paper de~~-~r ibLs the development of cuits could be as high as 10 MHz).  Thus , an
n-channel MOS circuitry for real time (equivalent entire f rame would be processed in Nf~ seconds .
to TV) implementation of selected algorithms: For a 512 x 512 f rame this would amount to
including edge detection , using the Sobel operator , 50 ~isec. The advantages of these techniqu es for
and unsharp masking . Part icular  empha sis di r ect focal plane processing are c lear .

• directed toward establishing the feasibil i ty of per-
forming two dimensional and nonlinear operations We c~esc r ibe here  tw o test c i rcuit s to be
in the analog domain and maintaining an accuracy implemented as n-channel surface CCD’ s with
equivalent to 6 to 8 bits. The circuits described nominal operating speed of 10 MHz. We are cur-
typically occupy a few hundred mil 2 on the silicon ren t ly fabricating these circuits and designing
surface and hence offer  great potential for  both experiments to evaluate their performance.
hig hly parallel operation and integration with the Finally, we describe the test facilities we have
newly developed imagers.  built , based on an Intel 8080 microcomputer to

test the concepts .

I. INTRODUCTION II. TEST CIRCUIT I

Until relatively recently the computational The f i rs t  test circuit is a CCD implementation
complexity of most image process ing algorithm s of the Sobel ed ge detection algorithm. Thj 8 cir-
prohibited the effective use of integrated circuits cuit was chosen because it demonstrates two
(ICe) to process to data . However , the rap id operations important to image processing; the
pr ogr ess in technologies such as cha rg e t r ans fer possibility of achieving a two-dimensional convo-
devices and metal oxide semiconductors (MOS) lution with a rb i t ra ry  weightings and the ability to
with inherently low power-delay products has pe r fo rm nonlinear functions such as the absolute
resulted in a very significant increase in the cir-  magnitude operation.
cuit complexity permissible in a single IC. (The
hand calculator and single-chi p micro-processors  The algorithm itself operates on an a r ray  of
are commercial examples of these developments.) 3 by 3 picture elements with intensities f(i ,j )  and
Charge coup led devices (CCDs) are part icularly evaluates
significant to image processing since they can be 1 r /
employed both in the image detsction and process-  S~i ,j ~ = ~~ l~~ f(i -1 , j -1)  + Zf( l ,j - l )  4- f ( l + 1 , j _ 1 )
ing. Further , they can be configured to provide L
an especially simple and direct means of per-  - ( f ( l _ 1 , j + l )  + 2 f ( i , j + l )  + f(i+ 1 ,j + l ) ) ~forming two dimensional convolutions , which form
the basis of much low-level image process ing .  + I(f(i-l , i _ l )  + 2f(i- 1 , j~ + f(i.. 1, j+ 1))
The Sobel edge detection circuit, described below , /
is an example of this .  Finally, the extremely hig h — (f ( i+l , j _ i )  + 2f( i+ l , j )  + f(i + l , j + l ) )  I (1)
packing densit y of CCD and MOS c i rcu i t ry  allows J
many circuits to be used in parallel to provide for each picture element . A schematic of the
an area processor as shown schematically in circuit concept is shown in Fig. 2 . Three para l le l
Fig. 1. Here a CCD imager or analog store is lines of charge , proportional to the pixel

more detailed d iscuss ion of this work can be found in
the USC Semi-Annual Technical Repor t , dated Sept . 30 , 1976.



~~~~~~~~~ END
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CCO IMAGE OR STORAGE PROCESSING CIRCUITS

CCD CLOCK RATE

= START OF FRAME TRANSFER

Fig. 1. Concept of Parallel Pre-Processing Configuration

value of these operations taken prior to summa-3 3CUAAGE

OFF AND 
tion . In the direct implementation conventional

ABSOLUTE MOS differential amplifiers can be used to per-

CH~~ G. 

these fed to absolute value circuits .
VALUE form this first operation , and the outputs from

______ Two absolute value circuits are included on
1sosa Test Circuit I and output will be available from

[
SUUM FR 

~ 
both. Figure 3 depicts the circuit schematic and
potential diagram of a single channel CCD abso-
lute circuit. The circuit uses a fill and 8pill

O F F  AND 

input system to generate a charge, Q, propor-
tional to the magnitude of the voltage difference on

ABSOLUTE I gates Sig and B2 , i .e . ,  Q = C0,~ (~ eig - VBZ ).  In
VALU E thi s way the B2 electrode is used as reference.

For a negative input signal the potential profile at
the silicon surface is as shown in the upper figure.Fig . 2 . Schematic of CCD Sobel Circuit When the diffusion 4’INA is pulsed , charge flows
along the surface and fills the potential wellintensities, are fed into the device using Tompsett shown . When $INA drops , the excess chargepotential equilibration inputs for  linear operation , flows across the potential barrier formed underThe top and bottom lines of charge are then

divided into two parallel channels using a central the signal electrode back to the input diffusion.
Then as the t ransfer  gates, 4’OUTA’ are clocked ,implanted channel stop as illustrated , and floating the charge represented by the shaded area isgat e electrodes are used to nondestructively sense clocked out . For a positive input signal, thethe charge in each channel. With the electrode

configuration shown, the voltage appearing on the potential profile is shown in the lower figure .
After the spill and fill operation is comp leted bytop interconnection, for examp le , is again pulsing the input diffusion , charge collects

V 1 = k C0,~ ~f ( i - l , j - l )  + 2f(i , j - l ) + f(i+1 ,j - l )~ 
in the well as shown, and the charge indicated by
the shaded area is clocked out . If the total gate

where C0,~ Is the oxide capacitance and k is a con- area of FZ and SIC is designed to be equa l to that

~tant relating the charge generated by the input of B2 and FZ , equal amount of charge will be
circuit to the pixel intensity. The weightings , transferred for positive and negative signals of
(1 , 2 , 1) are obtained directl y by making the central the same magnitude. Thu s, an absolute value
electrodes twice the area of those on the corners ,  function in the charge domain is obtained. Thi s
The voltages appearing on the other three inter- implementation has a number of advantages which
connects are equivalent to the other expressions will materially affect the performance and accur-
shown in equation ( 1) .  acy of the circuit. For example , it always pro-

vides a ‘fat zero ’ bias charge packet (indicated by
To calculate the full Sobel4S i ,j } ,  pairs of the cross-hatched area)  to decrease the t ransfer

these output . are then subtracted and the absolute inefficiency caused by the surface states in the
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si ES SIG B2 •OUT A VSCR •SET The other absolute value circuit to be included
in Test-Chip I uses two parallel CCD channels

~~~~~~~~~~~~ 
which act as rectifiers to provide a single differ-

v~0 ence output. The basic details of this concept
were described in the USC Semi-Annual Technical
Report for Sept , 30 , 1976.

We are currently in the process of fabricating
these devices on a Hughes Aircraft  Company IR&D
chip and we anticipate circuits will be available in

~
T

~~~ t
April 1977 .

Ill. TEST CIRCUIT II
Q.F ZV( -SIG(

The detailed design and layout for a second
test circuit is currently in progress.  The circuit
is designed to operate on a 3 by 3 ar ray  of pixels
and perform the five operations defined in equa-
tions 1 through 5.

i+ 1 .+1

1—1 j — l
Low Pass Filter 

~~~~~~ 
‘ 4 E ~~ f(i ,j )  (2)

Unsharp Ma sking S(i ,j )  = (1-o) S(i ,j )

0’ U • (V $16)

+ a f  (i, j )  (3)m

Adaptive Binarizer f.0(j ,j )Fig. 3. Absolute Value Circuit No . 1

( 1 
~~~~~~ ~ f(i ,j )channel. The level of this ‘fat zero ’ is controlled

by the dc bias applied to FZ . 1m~~’~~ 
> f(i,j )  

(4)

A preliminary experiment was performed on Adaptive Stretching 
~a~

1’ ~a simple input to demonstrate the functional con-
cept described above. Thu circuit wae not 2 Mm 1~(~’ j), r/ 2} 

~m~
1’ j) � r/2designed for performing absolute value functions,

Hence , its input gates are not structured for this Max {(1(i . j )_ r / Z ) . t4f (i , j)  > r/Z 
(5)

particular application . However , it illustrates
the validity of the concept. Figure 4 is a scope
photograph of both the input and output waveforms. The circuit philosophy is to provide each of
It can be seen that the bottom half of the input the five output fun ctions independently and make
waveform is inverted in the output . The output the interconnection either with wire bonds on the
waveform is not symmetrical about the zero level chip surface or external coax . In this way
due to the asymmetry of the input gate parallel techniques will be investigated and each
arr angement . function can be isolated and tested separately.

For example , two Sobel circuits will be built (one

charge sensing and calculation), and a number of
novel absolute value circuits developed . This

INPUT will allow us in the initial testing phase to evalu-
2 V/d’v ate six different circuit arrangements h’r edge

using a HAC proprietary arithmetic technique for

detection and determine the performance and
accuracy of each approach. Then , in the final ,

OUTPUT 

image processing, we will select the optimum.

IV The detailed design and simulation of each of
these devices has now been completed. A brief

O SV / d 

descr i ption of each circuit element is given below,

A. Edge Detection
20 Msec/div

The edge detection technique is again based on
on the Sobel operator , and two circuit concept s

Fig. 4. Input and Output Waveforms of a are being developed , based on the two dimensional
CCD Absolute Value Circuit CCD matrix shown in Fig . 2. The design of the

-,
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differential amplif iers  have been computer to the unsharp masked output as defined by (3).
simulated up to 20 MHz , and It is estimated tha t The external control allows the output to vary
an accuracy equivalent to 7 bits will be achieved from all ed ges to cc.rnplete low-pass output .
with a gain of 0. 8. The balance achieved between
the two input devices is crucial to accurate oper- D . Binarizer
ation and in the device now being drawn , particu-
lar emphasis is given to this issue . The concept of the binarizer has been em-

ployed widely as the re f resh  element for di gital
B. Low-Pass Filter and Center Element CCD memories.  Its basic form is shown in

Fig . 6(a) .  The usual accuracy requirement for
The low-pass filter uses three  floating gate the digital refresh is comparatively low: merely

electrodes to sense and sum the charge magni - sensing about a fixed threshold , The accuracy
tudes in nine adjacent cells . The output attainable is controlled by the matching of the two
represents symmetrical halves of the circuit and is largely a

geometric and threshold problem. A photograph
j + 1 i±J of a typical digital r e f resh  circuit  (taken f rom
E ~~ f(i ,j )  Hughes Aircraft  CRC 100 chi p) is shown in Fig .
i- i  j - l  6(b ) where the required symmetry is immediately

apparent . Typical MOS threshold variation mig ht
and hence is nine times the mean. This has been be approximately 20 mV and hence 7 bit accuracy
done (rather than make each floating gate a ninth will require greater  than 2 volt swings.
of the full cell size) to increase the sensitivity .
It does , however , require a CCD shift register The binarization requires considerably more
with nine times the width to sense the center pixel accuracy than direct refresh since the switching
to achieve balanced signals . voltage itself is vary ing and is likely to be very

C. Un sharp Masking Circuit
f -V 00

The concept of the unsha rp  masking circuit is
shown in Fig . 5. It is based on the analog multi-
plier. Externally adjustable input s (controllable ø~) —I
by external power supplies) are  fed to t ransis tors  

________ I.—C~ iTi and TZ which control the gain of the two input
devices T3 and T4. Since these are drawing cur-  Ti 12
rent from a common source Vt~r~ the voltage of ? V0g V 05 ?
node, N, varies as (1 - a) f 5 (j , lt) +o f ~ (j , k).  The 02— i  —t~~J 

_____________output f rom the source follower is thus equivalent
AVERAGE DATA “I 13 1. CE N T E R  P I X E L

~~~~~~~~~~~~~~~~~~~~ GG~~~~~ 

Fig .~~~~~ . Schematic of Binarizer

SOBEL “~Lj 14 LOW PASS •~•t 
, :~.1. u u ~~~~~~~

12 ff”a 
_ _ _ _ _

H

Fig . 5. Analog Multip lier Used for Un sh a rp
Masking Fig. 6(b). Photo-micrograph of B i n a r i z e r

_____________ - 
- ~~~~~~ —~~=—~~---- .~~~~~~ - — —~~~~~~~~ - --
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close to the input signal (one being the center IV . TEST FACILITIES
pixel, the threshold being the average of its nine
neighbors). We are therefore currently consider- During the past six months we have spent a
ing using a prearnplification stage prior to the considerable time develop ing the test facilities
cross-coupled latch shown. An amplification of necessary to demonstrate the performance of our
say 5 would be sufficient to achieve the necessary CCD circuits on the USC data base. The concept
accdracy and provide correct latching . This of the system is shown in Fig . 7 . It is based on
problem is currently being analyzed, the IMSA! 8080 microprocessor and interfaces

with the USC PDP-lO via a standard 30 byte tele-
Adaptive Stretching - phone line . Image data , stored on magnetic tape

at the Image Processing Institute , is read by the
The adaptive stretching function is imple- PDP-l0 and transmitted to Hughe s Research

mented by having an input signal equivalent to f(i , j)  Laboratories via the existing telephone tie line. ,
ac coupled to a MOS transistor which is driven by and stored in the di gital memory of the micro-
an external voltage V~. (This input can also be processor .  The data car, then be displayed on the
derived from the mean 

~m by internal bonding on TV monitor shown, and if required stored on a
the chip.)  The gain of this circuit is 2 and the commercial tape recorder cassette for later
output will be linear until, the transistor Tl limits reference. An eig ht bit digital to analog converter
at f(j , j ) ~ ~ 

(i. e ., input magnitude f(i , j )~ /2). is then used to. access the data in the memory and
The com~~~ment of this output is also avaiYa~ 1e interface with CCD circuits. The processed data
which provides a thresholded output (up to f rom the circuits is then returned to the memory
~
(
~
,
~ )lmax ) and then a linear gain of 2 . These two via an analog to digita l converter as shown.

outputs provide the transfer function shown on
page 160 of the September 1976 Semi-Annual, The circuits themselves are bonded in a 40

• isolating the high brightness and shadow regions pin dual in-line package and mounted in a coaxial
and can be externally varied by controlling the breakout box , throug h which the clocking pulses ,
threshold voltage V~ and the gain , via the source biases and resets are app lied. At the present
follower input Vg. time all the components shown in Fig. 7 have

USC HRL ( HRL.
I TEST

• 
. SET—UP

[ USC IPI
• DATA BASE I

‘

‘I __ _  _ _  _  _ _  _ _

J PDP-10 
~, MODEM 

~~~~~~~
IPCQMPUTER I ~~~ FH ~1iH CCDI i I INTERFACE I I IMAGEI I CIRCUIT I PROCESSING

1 I I CIRCUITS

~~~~~~~~~~~~~ 
_ _ _  _ _ _ _  _ _ _ _ _

I I t  I
I DMA

] _ _ _ _ _  
I

4 I 
_ _ _  4’ I

[ HUGNES T VIDE~~~ 1 I CASSETTE 
I

• CONOGRAPHIC INTER FACE L INTERFACEDI SPLAY I I

i i  TV TAPE I
i L MONITOR LRECORDER

FIg. 7 . Schematic of Test Set-up
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been built and interfaced to form the full system. ~~~~~~~~~~~~~~~~~~~~~~~~~~ •

A photograph of part of the system is shown in
Fig. 8. We have also developed the necessary :

• software to interface the PDP-l0 with our system,
and successfully accessed images from the USC
system for both storage and display. 

__________

• 
_ _
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registration and change detect ion (see the paper by Price
IMAGE UNDERSTANDING RESEARCH AT CMU: and Reddy In this workshop). As changes due to

A Progrees Report perspective and ecale become more and more dominant, it
becomes desirable to view the problem of registration as
one of search involving constraint satisfaction based on

Raj Reddy spacial relationships. We think the model presented in Rubin
Department of Computer Science and Reddy (in this workshop) would also be useful in this

Carnegie—Mellon University case. The paper by Kober et at . (in this workshop) from
Pittsburgh, Pa. 15213 CDC indicates the progress to date on the cooperative image

March 27, 1977 registration research.

INTRODUCTION IMAGE DATAaASE
The primary objective of our research effort i. to If we are to have adequate performance and error

develop techniques and systems which would lead to analysis tools and tools for knowledge source generation, it

successful demonstration of image understanding concepts Is desirable to manually (or interactively) generate symbolic
over a wide variety of tasks, using all the available sources descri ptions of the images to be analyzed. This and other
of knowledge. This requires the determination of the type considerations have led us to begin to develop a unified
and nature of knowledge that might be applicable in a given symbolic and signal image database sys tem. The structure
task situation. The representation, use, and evaluation of of this database is described In Mckeown and Reddy (1977).

such knowledge must be made within a total system’s The database has several hundred images but only a few
context. The research program at CMU is an attempt at have symbolic descriptions so far.
parallel development of various components, incrementally
leading to increasingly comp lex image understanding ARCHITECTURES FOR IMAGE PROCESSING
systems, It is estimated that we will require processing power

of the order of 1 to 10 billion instructions per second in an
SYSTEMS AND TASKS a11 di gital image processing system with rapid response

The image understanding researc h at CMU uses DEC times. We are attempting to develop (in cooperation with
System 10/80, C.mmp (a 16 processor multi-mini computer COC) new problem”oriented high speed digItal process or
sys tem), and a dedicated MIPS (Multi-sensor lmsge architec tures for image processing. Given tha t C.mmp and
Processing System) computer. A complete description of MIPS are closely coupled multiprocessing systems , we are

MIPS, including the rationale for various design choices Is exploring issues of algorithm decomposition and parallel-
given in Mckeown and Reddy (1977). pipeline sys tem structures for image processing. Another

Our present plans are to attempt to interpret aspec t under study is the development of a special
uncontrived arbitrary images representing different views Instruction set for image processing using the writable

• 
. of the downtown Pittsburgh area (a 3-0 world), and aerial micros tore available with the POP-il processors on C.mmp

and sa tellite views of the Washington1 D.C. area (a 2-0 and MIPS.
world). The world models for these tasks are expected to KNOWLEDGE ACQUISITIONbe generated incrementally over the next few yesra. Given t he paucit y of ideas about type and nature of
KNOWL EDGE REPRESENTATI ON AN D SEARCH knowledge used iii visual percep tion, we are continuing our

The paper by Rubin and Reddy in this workshop protocol analysis studies in human visual perception.
presents our current views about representation of Studies in progress include picture puzzles (Akin and Reddy,
knowledge The PPE graph s tructure representation of 1977), perception as a function of distance, percept ion In
knowledge tends to be expensive in terms of space the presence of contradiction, and peep-hole perception
required, but Is essential if we wish to use tho faster beam- studies.
search techniques for image interpretation. We expect to
embed this particular knowledge representation and search CONCLUS ION
as the principal component into a total system which will The research program at CMU has many facets , but
involve planning (solution In simpler , coarser , or abstract we expect that progress will be slow given the inherent
spac es), iterative dynamic refinement of knowledge comp lexity of the problem and limited resources (present
representation, and goal-directed interpretation strategies. level of effort: about one person per topic above). At

At present we are developing the following presen t there is very little low~leveI vision research except
knowledge sources for the downtown Pittsburgh task: a 3- for the components generated by Ohlander and Price as part
0 model of the downtown Pittsburgh area, knowldge abou t of their theses. We expec t to primarily concentrate our
building structures and textures , knowledge about l~~al eff orts on total system design, knowledge acquisition and
refinements given coarse recognition (e.g., detecting care In representation, and specialized architectures for Imag.
roads and trees and bushes next to roads), knowledge about understanding research.
shedows occlusions and highlights, and so on. Given Our REFERENCES
basic approach of iterative refinement of knowledge, we will o. M. M~Keo~~ , Jr., 0. P. Paddy (1977). ~‘ø~ t4re,srehrtal
start with simple versions of these knowledge sources , and Symbolic Representation for an Image Database,”
ref m e  them as we observe their limitations when applied to Proceeding of IEEE Wor luhop on P icture Data
different scenes. Descr ip tion and Man.ageez.nt, April, 1977.

CHANGE DETECTION 
0. Akin , 0. R. Reddy (19 77). “Knowledge Acquisition for

Image Understanding,” to appear in Jourea~ oj ”
We plan to continue experiments in symbolic Computer Graphics and Imeg. Proc.ssistg, 1977.

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1976-77. PROGRAM REVIEW

R . La rson

HONEYWELL INC .
• Systems and Research

Minneapolis, Minnesota  55413

The Ho neywell contrac t began in May 1976 and APPLICATION OF SYNTACTIC METHODS
is part of a long range plan to develop a context
dependent image screening device. Potential appli- This part of the contract is being funded by
ca tions for suc h a dev ice include m i ss i le gu idance , DARPA through AFAL and is concerned wi th developing
automatic aerial reconnaisance, RPV data compres- and applying algorithms for real time image screen-
sion , intelligence gathering , FUR operator cuelng ing. The initial syntactic pattern recognition
and many more. Each application has different re- effort has three aspects:

provide and the size and kind of hardware that • ~~~~~~ ~~~~~~~ ~~~~~~ ~~~~~~~~~~~~ approach-
be used. However , the bas ic al gor i thm an d hardware ~

S
t~
O
baS~ for the k 

o am a suita e
technology for any one mission should be usefu l to a w r
the other missions. • Develop Autoscreener relevant DARPA research

at Purdue University .
Our 

A h h i d  hardware modification to • Evaluate and apply Honeywell IR&D and FU R
the Autoscreener. research to the Autoscreener.

. Appl ication of syntactic pattern recog- Pr bl f~nition methods. 0 em e m i  ion
In consultation with Professor T.S. Huang of Purdue,

AIJTOTHRESHOLD HARDWARE MODIFICATION we decided to direct the first year toward recog-
nizing airborne FU R images of isolated tactical

The autothreshold work is funded by the Air targets in a rural environment. FLIR imagery was
Force Av ionics Laboratory and is to make the Auto- chosen (rather than photographs, TV and downward
screener self adaptive to background and contrast looking IR) as being the most likely tactical sen-
changes. The adapting is done by estimating the sor. The class of isolated tactical targets was
background intensity at each pixel position while deemed sufficiently complex and large for a first
the picture is being scanned . To make the estimate, attempt at applying syntactic and contextual meth-
the device decides whether the pixel is like the ods to tactical quality imagery. We chose to fur-
background estimate for that position. If not, ther limit our attention to those kinds of isolated
then the background estimate is left unchanged . If tactical targets for which we could obtain suitable
it is like the background estimate, then the back- data.
ground estimate is updated using the new value.
The new background estimate is then compared with Data Base Selection--The Krebs data base* was
pixels in the next scan line. If the actual image chosen as our primary data source. The Krebs
intensity is much different than the background data contains a large variety of tactical targets
estimate, it indicates a possible object of inter- of both military and non-military types. In
est. Edge detection is done using the 3x3 Sobel addition to ground vehicles , there is imagery of
gradient operator. Large values of the gradient factories , docks, bridges (short and long), power

• g i ve ano ther i ndi cat ion of a poss ib le object of l ines , houses and even one example of a helicopter
interest. When both the intensity and the gradient flying across the field of view . After much dis-• indicate an object of interest then that portion of cussion , we decided to work only with military
the image is extracted and analyzed further by auto- ground vehicles as the primary target class and
screener . Include as additional classes of interest any ob-

jects or background areas that appeared in frames
This authothreshold a~gorithm is currently containing primary targets and which could either

being Implemented in hardware to provide a real- aid classification by context or which might be
• time interface between a FLIR sensor and the Auto- confused with the primary targets. The object

screener. Both the background estimate and the types selected include: Tank, Truck, APC , Car,
edge detection are done i n hybr id , di screte ana lo g House , Roa d , Vege ta ti on , Shadow .
fashion (continuou s amplitude, d i scre te in space)
using CCD scan line storage devices. The current Solution Approa ch--Next, we considered possible
Implementation uses discrete hardwlred components methods of recognizing these target types. In gen-
and occup ies fi ve 412 inch by 6½ inch boards. eral , an imagery recognition system has four levels

of activity: 

- - ~~~~~~--—.- - - rn-—--- 
—--• -,

~~
,‘. .. -.-.

~~~~~~~~~~
- —
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design is now being developed which wil l  combine

~~ Ct De4ectio the useful measures intelligently. Details of thisje n work are reported separately by Purdue.
2. Target Detection
3. Target/Background Separation (Boundary Applications of Honeywell Technology

Location) The group at Purdue had prior experience with u sing
A T et R o n~

4
~ 

high-level primitives (image segmentation , shapearg ec g i ion anal ysis , texture transformations , etc.) in image
Each level of activity has its own goals and the analysis. Honeywell therefore chose to transform
degree to which it meets these goals affects the the imagery directly into a low-level symbolic
performance of the following levels. The functions representation and perform syntactic analysis on
in each level are also affected by the size of the the resulting symbol array. The method chosen was
target image. Because of the variety of functions a method for adaptive cluster seeking that had
and performance requirements and the fact that been conceived in signal processing research. The
parts of the problem have been studied and/or method was restated for use on imagery and applied
solved by other efforts, the scope of the approach to the digitized FLIR data. The results of this
was limited to points 3 and 4 - Target/Background work are described in the workshop paper “Symbolic
Separation and Target Recognition - and we decided Analysis of Images using Prototype Similarity ”.
to focus on medium resolution imagery. (Medium
resolution is defined as vehicle image area of 50 

____________

to 600 pels.) 
* The Kreb ’ s da ta set was coll ected un der RADC

Autoscreener Relevant Research at Purdue funding using a

Purdue University has been looking at the FLIR tac- the Naval Air Test Center at Patuxent River , Mary—
tical target recognition problem with the intent to land. The flights were made during the spring of
combin e var ious sim i le meas ur ements into a “smart 1974 at altitudes from 2500 feet to 3500 feet. The
detector” using texture , shape, and context infor— original purpose for the data was to evaluate
mation. Several basic simple measurement techniques human factors i ssues in operator recognition of
being developed at Purdue have been applied to the~ FL IR targets.
FL I R Ima gery to determ ine what types of process ing
are useful in a higher level system. These include

• texture segmentation, statistical contour following,
and feature-plane clustering. The overall detector

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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ALGORITHMS AND HARDWARE TECHNOLOGY FOR IMAGE RECOGNITION

Project status report - ~tarch , 1977

Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

This report summarizes the current Phase Task
status of the research being conducted
under Contract DAAG53-76C-0l38 (DARPA I (Task and technology review)
order 3206), as well as plans for work to 1) Data base acquisitionbe done on this project in the near future.
This project was initiated on May 1, 1976. 2) Review of tn —service oper—
It is being carried out by the Computer ational needs and resulting
Vision Laboratory, Computer Science Center, system design constraints.
University of Maryland , College Park , MD; 3) IIardware/al~4orithxa interfaceProfs. Azriel Rosenfeld and David L. Mu-
gram are principal investigators. It is II (Algorithm development and test-devoted to the development and selection ing)of algorithms for automatic target cueing
on Forward-Looking InfraReL (FLIR) imagery, 4) Algorithm development
and to the hardware implementation of one 5) Algorithm selection and testor two such algorithms. The hardware as-
pects are being investigated by the West- 6) Target and background model—
inghouse Defense and Electronic Systems lung
Center , Systems Development Division ,
Baltimore, MD; program director of this III (Hardware design , fabrication ,
subcontract is Dr. Glenn E. Tisdale. The and testing)
project is being monitored by Messrs. John
Dehne and George Jones of the U. S. Army 2. Data base acquisition
Night Vision Laboratory , Ft. Belvoir , VA. Three data bases were acquired and
1. Introduction preprocessed (smoothed , windowed) :

a) NVL data base: A set of 145 FLIRThe project reviewed in this status scenes containing targets (tanks,report has two principal goals: trucks , APC ’s) against a sparsely
a) Selection of state—of—the-art wooded or barren background.

algorithms for automatic target b) Alabama data base: A set of 54cueing, and implementation of one FLIR scenes containing targetsor two selected algorithms in ( tanks , APC ’s, buses , jeeps , andhardware to demonstrate the
feasibi l ity of incorporating such personnel) against a somewhat

less noisy background .algorithms in a reconnaissance
sensor. c) Sequential data base: A sequence

of 10 FLIR images , similar tob) Exploration of new approaches to those in the first data base,image understanding , with emphasis taken 1/15 second apart.on techniques applicable to target
cueing and similar ~ppIications , Detailed descriptions of the first data
as well as on image modeling for base can be found in [1], and of the
performance prediction. second and third data bases in [2).

The project consists of three phases 3. Image modellingall of which involve collaboration between
the University and its subcontractor , the An approach to modelling FLIR imagery
Systems Development D~.vision of Westing- has been developed , based on the simpli-
house. The three phases and their break— fying assumption that targets appear as
down into tasks are displayed -in the homogeneous hot regions within a homo-
following table : geneous cooler surround . This model

describes the joint probability density

. .- —•——--~~ -- ~---- rn 
-- .-. —
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of gray level and edge strength in such shrinking and reexpanding of the above-
images , for various edge—detecting oper— threshold areas , can be used to eliminate
ators (1, 2). In brief, the model pre- many of these noise regions . Several
dicts that for low edge values (com es— variations on this approach were studied
ponding to points in the interiors of in (1-2].
objects and background), there should be The regions surviving the postpro-two relatively well separated probability cessing step must now be classified intopeaks , of different sizes, representing target and nontarget classes . To thisthe gray levels of object and background end , the connected components of the
interiors, respectively. For higher edge su~~ iving points ~‘ie extracted , and a setvalues, corresponding to points on object! of size and shape features is measuredbackground borders , these peaks should 

for each component. A discussion ofmovo together and become a single peak feature selection and the classif icat ionrepresenting the border range of gray procedure will be presented in Section 6.levels.

The model just described can be used 5. Object extraction based on edge!
as a guide to segmenting FLIR images by border coincidence
thresholding . At low edge values , it 

The thresholding approach to objectshould be easy to pick a threshold at a extraction described above has the dis-gray level in the valley between the two advantage that a single threshold willprobability peaks , since these are rela— usually not be satisfactory for an entiretively well separated . At high edge scene. If the image is divided intovalues, the peak gray level value itself , windows , two difficulties arise if aor perhaps the mean gray level, should be threshold is assigned to each window.a good threshold , since this represents First , it is still possible that objectsthe “center” of the edges. For inter— at different intensities will be in themediate edge values, one can compromise same windows and second , an object maybetween these two thresholds in various now overlap several windows . In theways. A comparative study of threshold former case , we will miss one or moreselection schemes based on this approach objects (assuming the threshold selectionhas been conducted (33, and has shown thnm algorithm will choose an appropriate
to be superior to conventional threshold threshold for the multi-object window).selection methods. In the latter, d i f f e ren t  thresholds may

have been chosen in adjacent windows tc4. Object extraction based on threshold extract regions of the same object. Thisselection inconsistency is likely to a f f ec t  what
As a preliminary to using threshold- the thresholded objects looks like. A

ing to extract objects from an image, it further difficulty attends the interpre—
is important to smooth the image , so that tation of the thresholded image since it
the extracted objects will not be too becomes difficult to differentiate object
noisy. The use of both mean and median regions from noise regions .
filtering for this purpose was investiga— The approach which has been develope.1
ted (1—21. It was found that  median views the extraction of objects as afiltering using a 3x3 neighborhood of classification process into two classes:
each point produced the best results. An object regions and noise regions . Re-
adaptive technique, which identifies gions to be classif ied are extracted byneighborhoods that are noisy and edge- first thresholding the (smoothed) imagefree , was shown in (43 to smooth noisy and them segmenting the thresholded imageregions in images without degrading edges. into connected components. Each connec~~dThe technique was also used to produce a component is considered to be a candidateweighting function to suppress spurious for classification . Three heuristics are
responses of an edge detector operating used : a size heuristic , a contrastin a noisy environment, heuristic  and a “well-definedness”

Threshold selection based on the heuristic . If object size range is known
(gray level, edge strength) probability a priori, then noise regions outside the
density was investigated using a number object size range can be rejected . The
of different edge detectors [1-21. It contrast heuristic states that objects
was found that a “coarse gradient” detec— contrast with their surrounds. This may
tor , based on differences of averages be quantified by measuring the average
taken over pairs of adjacent 4x4 neighbor- gray level difference between the interior
hoods , gave the best results, since this of a connected component and its boundary.
detector combines smoothing with edge de— Finally , the well-definedness heuristic
tection. states that objects are viewed as being

distinct from their surround by the pre—Even when applied to smoothed images, sence of an edge at the boundary . Thisthresholding methods will sometimes ex— is computed f i r st, by extracting an “edgetract noise regions, as well as objects. 
map” from the scene , consisting of thePostprocessing techniques, based on

- - ~~~~~~~~~~~~~~~~~~~~~~ 
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result of thinning the output of an edge sity of Maryland has concentrated on the
detector; second, by measuring for each hardware implementation and fabrication
extracted region the percentage of its of image algorithms for the focal plane
border which coincides with the edge map. (1, 2]. Algorithms whose hardware im-

The combination of the contrast plementation has been designed include:
median filtering , edge detection usingmeasur’~ with the edge/border coincidence differences of averages , edge thinning byserves both as a discr iminant  funct ion for

object regions and as a figure of merit non—maximum suppression , threshold selec—

for ranking the classified object regions. tion based on a (gradient, gray level)

This approach does not require the user to his~-ogram , noise cleaning by shrinking
preselect a particular threshold or set of ana .axpanding and additional support logic

such as serpentine delay lines and AIDthresholds . However , the speed of the
algorithm is linear in the number of converters. The attempt throughout is to

thresholds investigated. Moreover, the design and build algorithms in analog CCD

false alarm rate is related to the gray hardware within overall system constraints

level probability of the chosen thresholds, on data flow, storage requirements, chip—
This implies that care in selecting size , yield factors and cost.
thresholds will generally be worthwhile. ReferencesAn implementation of this method has pro-
vided good segmentations of FLIR windows.

El] Algorithms and Hardware Technology
for Image Recognition , First Quar-6. Target classification terly Report , Computer Science Cen—

Regions classified as objects by the ter , Univ. of Maryland , College Pk.,
methods of Section 5, may be fur ther  MD , July 1976.
classified as to target type . A hierar-
chical decision structure has been imple— (2] Algorithms and Hardware Technology
mentec based on size, shape and contrast for Image Recognition , First Semi-
features. Object regions which survive Annual Report, Computer Science Cen—
the prescreeniny are divided into two ten , Univ . of Maryland , College Pk.,
groups based on size. The group of MD, October 1976.
smaller regions is classified into target
and noise classes based on compact shape (3] D. P. Panda , Segmentation of FLIR
and contrast. No attempt ~s made to Images by Pixel Classification ,
identif y the par t i cu la r  t~ get types since Computer Science Center , Univ. of
these objects generally correspond to Maryland , College Pk., MD , Tech .
vehicles at long range with no identifiable Rep. 508, Feb. 1977.
characteristics. The group of larger re-
gions is classif ied into tank , APC , truck [41 D. P. Panda , A Method of Adaptive
and noise classes based on shape (compact— smoothing and Edge Enhancement,
ness , symmetry , aspect) and contrast. Computer Science Center, Univ. of

Selection of Lhe set of features Maryland , College Pk., MD , Tech ,
actually used at each node of the decision Rep. 504, Feb. 1977.

tree is restricted to tho2.e “logically
allowable ” at the giv.:n node. For ex- (5] D. L. Milgram , Ragion Extraction

ample, while the brightness of a region is Using Convergent Evidence , Proceed—

allowed to di...tinguish objects from noise , ings of the ARPA SemiAnnual Work-

it is not used to determine vehicle type. shop on Image Understanding ,

The point of this restriction is to reduce Minneapolis, MN , April 1977.

the dependence of the f ina l  c lass i f ier  on
the pre—classified data , increasing both
the robustness and the intelligibility of
the classification. After this logical
preselection is made , the effectiveness of
features to be assigned to a node can be
evaluated by standard statistical techni-
ques (analysis of covariance, multiple
discriminant analysis) . The purpose is
to increase the stability of the classi-
fier without decreasing its accuracy, Ex-
periments described in [21 exhibit good
self—classification; however , we have not
obtained good results when extending the
classifier to a test set.

7. Hardware design

The Westinghouse Systems Development
Division as a subcontractor to the Univer— 
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IMAGE UNDERSTANDING AND INF0RMAT i~ N EXTRACTION

K,S. Fu and T.S. Huang
Purdue Univers i ty

W. Lafayette , Ind iana 47907

This Is a progress r~ pOrt of our research in the potential of a very fast method which might be
Image Understanding and Information Extraction dur— implemented either dig itally, optically, or with
ing the last six months. The objective of this re— CCD devices.
search is to achieve better understanding of image
structure and to improve the capability of image keng and Fu have studied the problem of image
data processing systems to extract information segmentation by a syntactic method. Th is method
from imagery and to convey that information In a invo l ves the following four steps: (I) texture
useful form. The results of this research are cx— region primitive extraction , (2) boundary prim i—
pected to provide the basis for technology devel— tive extraction , (3) grammatical inference , and
opment relative to military applications of ma— (4) syntax analysis. Examples of apply ing the
chine extraction of information from aircraft and method to various images are also reported (2].
satellite Imagery.

IMA GE ATTRIBUTES — Following our earlier ef—
Our research projects can be categorized into fort on Fourier shape descriptors , Wal lace  and

six rather heavily overlapping areas. Image Wirit z have continued to study the use of Fourier
Segmentation , Image Attributes , Image Structure , descriptors for three—dimensional objects. Yoo
Image Recognition Techniques , Preprocessing and and Huang have inv esti gated the sufficient n’~~~erApplications. The relationships and interaction s of Fourier coefficl~~ts for a discrim i nation oro—
among these categories is suggested by Figure l. cess. An efficient implemen tation of Fourier
After the sensor collects the Image data , the pre— descriptor algorithms is also described [2].
processor may either compress it for storage or
transmission or It may attempt to put the data IMAGE STRUCTURE — A syntactic approach to
into a form more suitable for analysis. Image seg— shape description has been stddied by You and Fu.
mentation may simply invo l ve locating objects in A 4—tup le curve prim itive and an angle primitive
the image or, for complex scenes, dete rmination of are proposed , and their properties studies .
characteristically different regions may be re— Shape grammars based on the proposed primitives
quired. Each of the objects or regions is cate— are constructed fo different shapes [2].
gorized by the classi fier wh i ch may use either
classical decision—theoretic methods or some of the IMAGE RECOGNITION TECHNIQUES — A “supervised
more recently developed syntactic methods. In clustering ” method has been shown by Fukunaga and
linguistic terminology, the reg ions (objects) are Short to be useful for localizing a problem
primitives , and the classifier finds attrIbutes ‘ ‘

~i~~r than dealing with a more diffIcult global
for these primitives. Finally, the structural ana— problem . Computationa lly simple yet accurate re—
lyzer attempts to determine the spatial , spectral , sults are obtained, Potential applica tions of the
and/or temporal relationships among the classified approach include linear classifier design and den-
primitives. In some respects , this is where rea l sity estImation [I].
“i mage understandIng ” is developed.

Classification usin g image context has beenOur accomplishments during the past six months studied by Swain and Kit. A statistical contex—have been recorded in our progress reports (1 ,2]. tual classifh r mi nimizing Bayes risk is de—Here we shall summarize the highlights : rlved. Prelimi nary results from data simulation
have been reported [2].

IMA GE SEGME NTATI ON — Consi derable  prog ress has
been seen In segmentation of imagery by clustering PREPROC ESSING — The projection algorithm for
methods. Yoo and Huang have pursued this approach Image restoratIon studie d by Berger and Huang is
throughout the year , and asi.Jnma ry of their work, bein g adapted for use on actual satellite data,
with application to mages containing a tank and Practical consider ations of the algorithm are re—
two aircraft , I s Include d in (I]. ported (1 ,2]. O’Connor and Huang have investiga-

ted the phase unwrapping with applications to
The work of Can ton .nd Mitchell concerning stability and picture deb lur ning. Improvements intexture has now evo l ved from the study of image one-dimensional phase unwrappin g are made and aattributes to the development of techniques for two-dimensional phase unwrapping algori thm Is pro—

image segmentation using texture and gray leve l posed. Extensive results from the development are
features, The i r  resul ts , discussed in [I], offer reported [2].

--



102

APPLICA TIONS — Fourier descriptors have been
demonstrated to be a usefu l means of describing
the shape of a closed planar fi gure , and , in
part icular , Wa llace and W lntz have used Fourier
descr iptors to encode the shapes of aircraft.
Resu lts using this approach for aircraf t  recogni-
t ion have been reported (11.

Spatial filterIng has been used by Mitchell ,
et. al. to reduce the effects of ilgh t cloud
cove r in sate l l i te  imagery . Results from a
computer s imulation and from LANDSAT data are
discussed In [1].
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OVERVIEW OF THE ROCHESTER IMAGE UNDERSTANDING PROJECT

Jerome A. Feldman

Computer Science Department
The University 0f Rochester

The Rochester program covers three major sub- useful facilities for control of vision tasks ,
topics: using map knowledge for specific aerial representation of knowledge , and automated
imagery tasks, development of a general image reasoning. As the latter facilities develop, the
understanding framework, and system support for user code may be written to leave more and more
image understanding. These will be briefly dis- details to the system. All of this system and
cussed in reverse order. generalization work is di rected towards the

carrying out of specific image understanding
missions. Our imediate goal is to use a variety
of kinds of knowledge to solve particular prob-

One of our first tasks was the extension of lems in aerial imagery . For example, consider
the SAIL programing language whi ch is heavily the problem of finding and classifying ships in
used by contractors in this program. The largest an aerial image of a known port. Details are
change was increasing the number of allowable given in the paper by Brown and Lantz, but the
i tems from 4 ,000 to 256,000, thus Overcoming one main thrust of the approach is to use prior
major bottleneck. This addition , along with knowledge about where and how ships may appear
others which increase speed and reliability, was to direct search for them. We want to have avail-
incorporated into the standard SAIL files at Stan- able through the system map knowledge about the
ford and have been distributed to user sites. source of the image (e.g., where coastlines are),

• Current programing language work is centered asserti onal knowledge about how ships look , where
arou nd development of a new language for distri- (In relation to other objects) they are found ,
buted computing tasks, including image process i ng . and procedural knowledge (e.g., how to verify

the presence of a given shape). The system is
The entire problem of dealing with images in designed to facilitate effective use of this

a network environment is of continuing concern, diverse knowledge, and furthermore to provide
We have made con~ iderahle progress towards a facilities for the more-or-less automatic per-
flexible , machine-independent distributed image formance of common tasks such as selecting the
processing system. A summary of this work and best procedure for a task or reasoning about the
references to more detailed descriptions can be relative location of objects.
found in the technical paper by Feldman and Rashid
in this volume. One result of this work should be Textural areas can be thought of as those
a domain—Independent Interface between image dis- parts of an image where segmentation based on
plays and image understanding programs. normal similarity measures fails. Meaningful

analysis of textured areas must include discrimi-
The development of these general tools Is nation between different textures and detection

part of a larger effort to construct an Image of parts of the same texture. The similarity of
understanding system which will be useful for a textures which are identical except for a scale
wide variety of tasks. This work Is proceeding change , a rotation , or a different range of In-
in parallel with our direct attacks on practical tensities must be recognized . Standard texture
image understanding tasks for ARPA and ether analysis techniques rely on the calc u la tion of a
agenc ies. The interaction between tool builders set of features (like edge probability per unit
and tool users is having the multiplier effect we area, or local neighborhood co-occurrence
expected when we started these efforts. An over- probability matrices) on training sets of images ,
view of the general vision system Is given in the taking statistical measures of these features for
paper by Brown and Lantz In this volume , each training set (mean , standard deviation ,

entropy , etc.), and partitioning the feature
We want the system to be a practical aid to hyper-space so that each partition conta ins

accomplishing vision tasks rather than just a exactly one training set. Unknown texture
methodology in search of a problem . It is there- patches are now measured by the same feature
fore initial ly designed to act as a framework In operators to determine their location in feature
which to answer specific ‘ quer ies ” about Images hyper—space , and are assigned the texture class
posed as domain-dependent user code. At the same of the appropriate partition. This technique
time we want to develop and Incorporate generally works well for limited domains , where an accurate
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training set can be chose n , and where textures
exhibit variation in the local features measured .
Rotations and scale changes result In a new tex-
ture class assignment.

We approach the texture problem by dividing
texture regions Into meaningful sub-elements of
similar Intensity sample points, then using
rotation- and scale-invariant shape measures to
characterize these regions, and finally deter-
mining spatial relationships among our sub-
elements. By using a decision-tree program
structure , easily discriminated textures are
separated quickly, and more complex textural
structure Is only extracted when necessary . This
texture analysis scheme not only classifies tex-
ture patches into sets, but also produces a
description of similarities and differences among
different patches. That information Is then
available to higher-level semantically driven
processes , and Is more useful t han a b inary
same/different deci sion.

Much of our early effort has been devoted
to bringing up a system which would enable us to
pursue these tasks. Then we set out to gather
as much relevant software and example imagery as
possible to avoid duplication . This has been
qui te successful due to the common use of the
SAIL language and the great cooperation by other
contractors. We are especially gratefu l to the
groups at CMU, Stanford , SRI, and USC for hel p-
ing us get so much productive work done so soon. 
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I NTERACTIVE AIDS FOR CARTOGRA PHY AND PHOTO INTERPRETATION :

PROGRESS REFORT APRIL 1976 TO APRIL 1977

H.G. Barrow (Principal Investigator)

Artificial Intelli gence Center
Stanford Research Ins t i tu te
Menlo Park, California 94025

Objectives The first task when a new image enters
the system is to establish correspondence
with the map . This is accomplished

The central scientific goal of our automatically, selecting potentially
research is to investigate and develop visible landmarks (using navigational data
ways in which dtverse sources of knowledge associated with the image) and then
aay be brought to bear on the problem of locating them in the image using scene
interpreting images. The research is analysis techniques. The next step is to
focused on the specific problems entailed confirm the validity of existing
in interpreting aerial photographs for knowledge. The system can automatically
cartographic or intelligence purposes. verify the presence of certain

cartographic features, such as roads and
A key concept is the use of a waterways, and can also monitor the status

generalized digital map to guide the of some typical dynamic situations , such
process of image interpretation. This as ships berthed in harbor or box cars
“map” is actually a data base containing stored in a classification yard . New
generic descriptions of’ objects and features are identified and incorporated
situations, available imagery , and into the data base using a number of
techniques , in addition to topographical interactive aids for mensuration and
and cultural information found in tracing. For example, new roads can be
conventional maps. traced , or heights of’ bridge supports can

be measured. The system can now use the
We recognize that within the data base to answer simple queries,

limitations of the current state of image entered by a photo interpreter via
understanding it is not possible to keyboard and display cursor , such as,
replace a skilled photo interpreter. It “shOw me pierll4” , “what is this building?”
is possible , however , to greatly or “how high is that mountain” . It a lso
t’ac’litate his work by providing a number has the capability for responding to a
of collaborative aids that relieve him of more complex query, such as “how many
his more mundane and tedious chores. ships were in Oakland—Harbor yesterday?” ,

by retrieving the relevant image from the
library, and then invoking the appropriate

Progress to Date task specialist.

At presen t, the questions that can be
Overview: asked are limited by the small size of the

data base and the available specialist
Our work has been centered on routines. The specialists to date are

evolutionary development towards an for carefully chosen tasks that could be
integrated interactive system . it performed with existing primitive low
consists of’ an interactive display level vision capabilities. Moreover , as

• 
. console , a map data base, an image pointed Out earlier, the demonstrated task

library, general image analysis routines , capabilities do not yet exist as a truly
and task specialist routines. At present unified system , but as a collection of
the system is not a unified whole , but independent programs thst shere a common
exists as a collection of programs: we are data base. They do , however , Show the
still working towards their integration, potential of bringing image understanding
The following scenario illustrates the and artificial intelligence approaches to
major capabilities that have been bear on problems in cartography and photo
demonstrated to date, interpretation.

- -- -— -- --
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Technical Details: ambiguous matches and the dependence on
viewing conditions inherent in the

The first task in the scenario is conventional correlation based approach.
putting the sensed image into geometric The technique is described in more detail
correspondence with reference imagery or ~ 

in our technical presentation. It has
map data base. This is fundamental ~~~ 

obvious application to navigation and

virtually every military application of targeting as well as photo interpretation.
imagery. Our initial approach was a
modest improvement on conventional image Having placed the image into
correlation. Given an image and parametric correspondence with the three
approximate viewpoint , the system dimensional map , we are now in a position
determined potentially visible landmarks , to predict the image coordinates of any
and then retrieved images containing the feature in the map, and conversely, to
landmarks from the library. For each predict the map features corresponding to
landmark , an appropriate area of the any point in the image. The former is
reference image was extracted and used , for example , in monitoring to
reprojected to make it appear more similar indicate exactly where in the picture to
to the sensed image. The reprojection was look. The latter is used to facilitate
accomplished using a camera model , based interactive graphical coninunication
on calibration data associated with the between the photo interpreter and the data
reference image , and elevation data base. Using the camera model and image

obtained from the map . Each reprojected calibration , many photo interpretation

image fragment was then correlated in a mensuration tasks may be accomplished

small predicted area of the sensed image, simply. Rout ines ex ist for determining
using Moravec ’s high speed algorithm , location, length , height , or straight line
From the pairs of corresponding image and distance, for features indicated
world locations the exact camera interactively in the image , as well as
parameters for the sensed image were velocity for objects (e.g. ships or cars)
computed by solving an over—constrained indicated in two images. The camera
set of equations. model provides a unifying theoretical

foundation that subsumes what would
Although repro jection prior to otherwise be a collection of ad hoc

matching is an improvemen t on convent ional trigonometric techniques. Combining the

Image correlation, the fundamental map and calibrated image , the system can

limitation of the correlation approach , also determine alternative routes and

namely sensitivity to viewing conditions , travel distances along roads between

remains. In particular, it still cannot indicated points.

match images obtained frcm radically
different viewpoints (e.g. low altitude It is important to keep in mind that a

obliques to high altitude verticals), map is only an approximation to reality:

sensors, or seasonal climatic conditions, it may be incomplete , be out of date ,

and it cannot match images against suppress details , or con tain errors. In
symbolic maps. To overcome these order to monitor or to make a detailed

limitations , we developed a new approach , interpretation of an image, it is

parametr~-’ correspondence , for matc”~1ng 
necessary to locate image coordinates of

images directly to a three dimensional objects more precisely than can be

symbolic reference map , predicted using the map and calibration.
We need routines which can take

The map contains a compact three— predictions and verify them in the image.

dimensional representation of the shape of As a first step in that direction we

major landmarks , such as coastlines, developed a guided line tracing routine

buildings , and roads. An analytic camera that accepts a rough approximation to the

mode l is used to predict the loca tion and path of linear features, such as r ivers or
appearance of landmarks in the image, roa ds , and extracts a best estimate of the
generating a projection for an assumed precise path in the image. It operates

viewpoint. Correspondence is achieved by by applying a specially developed line
adjusting the parameters of the camera detector in the vicinity of the

model until the predicted appearances of’ approximate path , and then finds a

the landmarks optimally match a symbolic globally optimal path based on the local

description extracted from the image. The feature values.

matching of image and map features is
performed rapidly by a new technique , The tracing routine is used in two

called “chamfer matching” , that compares - ways ; to verify the presence of known
the shapes of two collections of shape cartographic features, using prediction
fragments, at a cost proportional to from the map, and to interactively trace

linear d imension , rather than area.  These new features for incorporation into the

two new techniques permit the matching of map , using a guideline sketched by the

spatially extensive features on the basis user. The tracing of linear features is
of shape , which reduces the risk of’ currently a tedious manual process that
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constitutes a major bottleneck in map limits the amount of data in core (to,
production . say, 1000 entities) and writes entities

back out to disc , if necessary, least
Having a map and image in recently used ones first .

correspondence makes the automat ion of
many monitoring tasks feasible. Keeping We are in process of’ setting up a map
track of box cars In a railyard , for of the San Francisco Bay area , containing
example, is a typical tedious photo major features, coastlines, bridges and
interpretation task. Knowing the layout highways. The geographic data is indexed
of the tracks, makes the task essentially (the index structure is part of’ the
a one—dimensional template matching database) to enable fast retrieval of
problem. A routine has been developed information relevant to a particular area,
which flies statistical operators along a In addition to the three dimensional

track line to hypothesize possible ends of 
description of cartographic and cultural

box cars. These hypotheses are used with 
f’eatures, the map contains a partial

knowledge of standard box car lengths and taxonomy of world entities, with relevant

characteristics of empty track to locate general semantics , a catalogue of

the gaps between box cars. The program available imagery, and descriptions of

then reports the number of cars, 
data structures used by the system . The

classified by length . latter enables the system to construct
automatically new entities of the correct

Estimating highway traffic is a structure for inclusion in the data base.

similar problem which could be approached
by flying oar and truck templates along
the path determined by the guided road Future Plans
tracer.

Monitoring the presence of ships in a The fundamental problem addressed in

harbor is particularly easy to automate 
Our research is putting what we see (i.e.

when the map contains details of berths. a sensed image) into correspondence with

Given a question about the status of a what we know (i.e. the map data base).

particular harbor at a particular time , The geometric type of correspondence used

the appropriate image is retrieved from extensively above , is particularly simple

the data base. The ship monitoring because it relies on precise knowledge of

routine then projects berth locations from the appearance and structural

the map onto the image and uses an edge relationships of particular objects and of’

histogram of that region to determine the viewpoint.

whether the berth is occupied . The ultimate goal of automating photo

The key to automatic monitoring lies 
interpretation requires a much more

in being able to place the image into 
general matching capability. For

correspondence with the map , which then 
automatic map updating it must be possible

accurately specifies where to look. A 
to recognize objects described

relatively simple test may then be used in 
generically, f’or example, airports or

that limited context. We have implemented 
buildings whose precise form is not

three representative demonstrations of’ 
previously known. This sets several

this approach and believe that many others 
important requirements. The components

are possible. In a production 
of a generic description must be

environment , such monitoring could be 
established and a means found for reliably

performed automatically on a continuing 
extracting appropriate feature s f’rom the

basis as new imagery arrived. 
image; a means of’ coimnunicating
descriptions to the machine more
conveniently than programming must be

The underlying foundation upon which
much of the foregoing rests is the map developed; and the capability of using

data base . We have implemented a disc— the description in the context of what is

based semantic net data structure which already known must be developed.
can contain realistic quantities of data
represented in a way which permits In terms of’ these long range
efficient access. Entities are objectives , the ad hoc task specialists
represented by LISP atoms (of’. Engl ish developed so far are lacking in both
words ) and information associated with the generality and robustness. The primitive

entity is stored in a property list descriptions they employ are adequate only
format . When information concerning a for straightforward cases, and can easily
particular entity is sought , the property be fooled by the unexpected. We also need
list is retrieved from disc and the ability to teach high level
established in core. A “paging” scheme descriptions by showing examples , rather

than the time—consuming process of
programming. Ow’ next objective is ,
therefore, a mystem that can be
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interactively programmed to find instances
of objects whose generic descriptions are
taught by example. Such a system would
allow a P1, for example to point at a box
car of a par ticular type and ask how many
are present in the railyard , or to
identify a new class of airplane and ask
whether any are visible in earlier
coverage (possibly misidentified
previously) . These capabilities are very
hard to automate because of the difficulty
of reliably extracting feature s , so we
intend to begin with simpler cases , such
as finding airports or buildings. At the
same time we intend to experiment with
identifying objects from more complex
descriptions , relying on the P1 to
interactively indicate features. A
recognition aid developed along the lines
of MYCIN would be a significant
improvement over conventional state-of-
the—art systems which do little more than
facilitate mensuration. This work will
also help to identify needed f’eature
extraction capabilities as candidates for
development.
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THE USC IMAGE UNDERSTANDING PROIECT *
1 October 1976 to 31 March 1977

Harry C. Andrew s

Image Processing Institute
Universit y of Southern Califo rnia
Los Angeles , California 90007

1. Research Overview 2. Image Understanding Projects

Thi s document represent s the third semi- Thi s section present s recent result s in the
annual report funded under the current ARPA research area of Image Understanding. Progress
Image Understanding contract and , as such, has been achieved in the area of quantif ying edge
present s a certain amount of momentum and detector parameters by pattern recognition
progress toward the goals originally undertaken techniques as well as in edge elongation both in
a yea r and a half ago. I feel confident in stating monochrome and color scenes. In addition to the
that we clearly understand the Image Understand- above, higher level processes both in symbolic
ing problems in considerably greater depth . I change detection and synthesis of adjacent regions
also feel confident that we have made progress in are described. Finally considerable progress  has
the specifi c areas of quantitative scene segment - been experienced in the area of automatic scene
ation by clustering, quantitative edge detection and segmentation from signal processing (bottom up)
evaluation, and (naturally with the arrival of procedures. The preliminary success of thi s
Dr. Keith Price) have gained a good step toward algorithm is quit e encouraging as it utilizes com-
general sym bolic manipulation for the higher pletely unsupervised patt ern recognition clustering,
levels of many Image Understanding tasks, feature selection, and cluster optimization

techniques without the need for top-down or cx-
Naturally we have also progressed on the ternal guidance. The algorithm is based upon the

traditional front of our expertise, that of Image inherent homogeneity concept of image segments
Processing. The past six months have seen but measured in N-dimensional vector space.
breakthroughs in the areas of variable samp ling

— procedures for image approximation s, advances 2. 1 Scene Segmentation by Clustering
in the a posteriori restoration problem as well as Guy Coleman
object detection in noisy images. Optical filters
for image recon struction have been desi gned and Thi s project is rapidl y advancing toward
the foundations for research in the psychophysical fruition and represents a bottom up unaided
chara cteristics of the human visual system have scene segmentation procedure which is based upon
been laid, homogeneity concept s in N-dimensional vector

space. Mathematical pattern recognition, feature
On the ‘ smart sensor” front considerable selection and clustering techniques are utilized

effort has been expended in two areas by USC and quantitative evaluation s (comparisons) are
personnel , that of 3 x 3 kernel definition for perfo rmed. Because of the success of this
future sensor imp lementation, and the study of project , it is reported on in greater  detail in thi s
a real time CCD implementation of an on-board Image Understanding workshop.
image segmentor. Both these projects represent
study effort s for future designs. Naturally Hughes 2. 2 Symbolic Change Analysis
Research Laboratory personnel have also been Keith Price
progressing in the development of test circuitry for
the CCD chips under  fabrication, and it appears Recent work in image understanding has
that as of this printing, the Sobel chip is in shown that symbolic techniques can be applied to a
production and Is currently available for testing, large class of images with a variety of change

anal ysis tasks, The system to perfo rm thi s
This semi-annual report also includes an analysis is now operational at USC (having been

overvi ew of the current USCI PI laboratory developed at CMU). Work is continuing in the
confi guration , numerous modifications having been areas of: additional use of knowled ge in matching,
implemented over the past two years . Finally a additional task domain s, the actual matching
repo rt of recent Institute Ph. D. dissertations are fun ction, the use of the change results , change
included as well as the listing of recent Institut e analysis in sequences of images , and the use of
personnel publications in the open literature, these techniques in more general image under-

standing systems.
eThic research was supported by the Advanced

— Research Project. A gency of the Department of
Defense and was monitored by the Wright Patterson
Ai r Force Base under Contract F-33615-76-C-l203.
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2. 3 Synthesis of Adjacent Regions 2.7 Calculation of Edge Detector Parameters by
Erica Rounds Ho-Kashyap

William K. Pratt and flcram Abdou
Thi s wo rk describes an algcrithxn for

reconstructing a digital image given the boundary In previous reports we have formulated edge
vector lists of relations contained in the image, detection as the classical communication problem
Permissible topological relations between regions of signal detection in the presence of noise. In
are adjacency and containment, Interior points this work edge detection is discussed as a problem
are assigned to regions on the basis of a small of classifying patterns into two classes (ed ge and
set of “boundary types.” These encode the shape no edge). Many techniques have been developed in
of a contour segment connecting three adjacent pattern recognition to solve this problem. One of
vertices, The algorithm processes all regions them, the Ho-Kashyap algorithm, will be analyzed.
together so that space and time requirements are The Ho-Kashyap algorithm is briefly reviewed, and
minimized, the algorithm is then used to find parameters of

the Roberts’ Operator. Results obtained by these
2,4 Extension of Boundary Segments in a Multi- parameters are compared with probabilities of

Level System detection and false alarm derived theoretically.
Ramakant Nevatia and Kenn eth Laws The experimental result s show quite good corre-

spondence with the theoretical, and suggest the
This section describes continuing efforts in Ho-Kash yap algorithm can be a useful quantit ative

our approach to scene segmentation by edge method for edge detector design.
detection based methods. Obtaining boundaries of
objects of interest is of central importance in 3. Image Processing Projects
analysis of a scene. Previously we have described
a technique that links local ed ges detected in an This section surveys the progress made in
image into larger segments, providing partial the past six months on variou s image processing
boundaries for objects and removing much of the projects. Three new areas are discussed, those
undesired textured background. Extension of such of image filt ering based on the human visual
edge segments to yield more complete (longer system, optical fi lters from digitally constructed
segments) boundaries is described here. kinoforms (holograms) and spatial warp techniques.

On-going projects include the estimation of object
~~. 5 Detection of Edges in Elongated Neighborhoods boundaries in noise, and a posteriori restoration.

Ramakant Nevatia and Peter Chuan This latter project has experienced preliminary
success in deriving the phase component of the

Here we describe a technique for detecting OTF from spatially invariant distortions. Finally
edges that belong to elongated segments. This one project has reached fruition and completion,
restriction is expected to provide sensitivity to that of variable knot splines for image approxima-
desired types of edges and not to fine texture or tion. This technique has led to self-adaptive two-
random noise (to which Sobel , Roberts’ and dimensional approximation methods which auto-
Hueckel operators tend to respond). The technique matically sense the local activity of a reg ion and
is simply to convolve an image with elongated apply enou gh knots (samples) locally to minimize
nei ghborhoods in various directions. Each a regional approximation. The technique has
convolution gives a value indicating the magnitude applicability in bandwidth compression , image
of edge in that direction, The maximum value at understanding, and particularly in adaptive smart
each point and associated direction are chosen as sensing. In the former case , adaptive compres-
indicative of ed ge magnitude and direction at that sions are available. In the latter case on-board
point, high resolution sensor reduction is possible, and

in the image understanding case, the knot density
2.6 Color Edge Detection in Scene Segmentation represents a useful feature for higher level

Ramakant Nevatia processing.

A color edge detector, based on the 3. 1 Variable Knot Splines for Image Approximations
ach romatic Hueckel edge operator has been des- Har ry  C. Andrews
cribed previ ously. Thi s report discusses the
usefulness of such color edges in scene segment- This report presents a degree of freedom or
ation in comparison to the use of achromatic information content analysis of images in the
ed ges , and provides an update of the previous context of digital image processing, As such it
results. The concept of edge linking in color represents an attempt to quantify the number of
space is developed and it is demonstrated that the truly independent samples one gathers with
use of such edges in colo r aid in building a more imaging devices. Variable knot splines are utilized
robust and reliable system, Further  experiment - in a two-dimensional approximation theory frame-
ation i. required to determine if the improved work , and sample (pixel) density is assigned
performance using color is worth the threefold according to energy in the two-dimensional fou rth
increase in the requirements of storage and difference operators. Quite good adaptive
computation, at the current  costs for these compression and approximation is obtained from
resources, these results, as viewed in the accompanying

aerial reconnaissance scene. The adaptive nature
- of the algorithm is evident in the fa rm regions as

compared to the urban scene. (See page 5
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3. 2 Image Filtering Based on Psychophysical context with an associated cost function. This
Characteristics of the Human Visual System framework permits us to obtain an optimal
Charles Hall boundary estimation processor that includes a

choice for the detector component as well a s a
In the past decade many physiological and procedure for optimal selection of the detection

psychophysical experiments have given rise to a threshold.
fairly sophisticated mathematical nonlinear model.
This model has been extended to color perception 4. Smart Sensor Projects
and is being exercised to test its usefulness in two
areas of application: first, as a tool in image Our smart sensor effort is progressing nicely
compression and second, as providing a space with a division of labor between USCIPI personnel
in which useful image quality measures can be and Hughes Research Laboratory personnel. As
quantitatively developed. It is anticipated that can be seen from the following, simulations at
rate distortion and other assumptions will become USC indicated very small adaptive convolving
much more realistic in the nonlinear perceptual kernels can be quite useful for preprocessing
space developing in these studies, close to the front end of a sensor, In addition,

such processes, when implemented near the focal
3. 3 Optical Filters for Image Recon struction plane, provide potential for reduced subsequent

Alexander A. Sawchuk and Chung-Kai Hsueh dynamic range requirements in higher level
processes. The test facility at HRL is progres-

The report discusses the use of a computer sing and the Sobel chip seems to be making the
plotted hologram as the spatial filter in an incoher- usual progress through the variety of production
ent optical system. In the special situation where fa cilities necessary  to confi gure such devices.
the hologram contains phase variations only, it is Similar comment s can be applied to the Circuit
called a kinoform. One problem with the kinofo rm II , our first attempt at “adaptive on-chip”
is that it may not exist for a given impulse response. processing. Finally preliminary efforts are
Iteration methods on the computer are used to underway to design a real time CCD focal plane
obtain a kinoform which has a response very close image segmentor. This represents our first
to the desired one. In addition if we allow the entry into designing actual image understanding
kinoform to have a slow variation in amplitude as algorithms for potential on-board smart sensor
well as in phase, then a perfect desired impulse implementation.
response can be obtained, One application of this
system is to give a continuous desampled output 4. 1 Enhancement with 3 x 3 Kernels
from the discrete pixels o r ia CR T  or other discrete Harry C, Andrew s
image display device.

More sophisticated modern-day digital image
3,4 A Technique for A Posteriori Restoration processing has led to the study of adaptive (space_

John Morton variant) enhancement techniques. Coupled with
the ability of both smart sensor and digital refresh

This project is attempting to restore a blurred technology to implement 3 x 3 convolutions within
image with a minimum of a priori knowledge. The 1/30 second for 512 x 512 x 8 imagery, it was
only assumptions are a spatially invariant point decided to undertake a study of the power and
spread function (PSF) and the extent of the PSF is limitations that such 3 x 3 convolving kernel
small compared to the extent of the image. Prog- operations could be utilized to the task of smart
ress to date includes excellent recursive estima- sensor two-dimensional signal processing. The
tion of the magnitude of the optical t ransfer  fun ction underlying theme for this stud y is the utilization
(OTF) of the blur and good recursive estimation of of 3 x 3 kernels for use as control signals to
the phase of the OTF. Because the phase of the implement both linear and nonlinear as well as
distortion is considered extremely critical addition- spatially inva riant and variant (adaptive) signal
al effo rt is being spent on improved phase recovery, processing fun ctions in two dimensions. Coupled

with this motivation is the fact that USCIPI and
3. 5 Spatial Warp Interpretation Technique Hughes Research Laboratories are jointly em-

William K. Pratt barking upon the construction of circuits which
would potentially be able to implement these

Image interpretation consists of a description signal processing functions. A large variety of
of a scene, or parts of a scene, based upon some algorithms have been developed for these tasks ,
symboli c scene representation. A new technique and probably those which are the most successful
is described for image interp r etation of a segmented would be labeled as nonlinear.
image containing perspective views of three-
dimensional objects against a fixed background. 4. 2 Real Time Implementation of Image

Segmentation
3.6 Estimation-Detection of Object Boundaries in Guy Coleman

Noisy Pictures
Nasser E. Nahi and Simon Lopez-Mora The segmentation procedure developed else-

where In thi s report is currently being used to
Algorithms for successively estimating segment images on a general purpose computer,

boundaries have been developed in pact research It is possible to implement thi s scheme, with
reports. In thi s present report the problem is some suitable modifications, to segment images
formulated under a joint estimation-detection in near real time, that Is, at television rates.
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The study of such a real time system is the subject 5. Institute Facilities
of this section, and block diagrams arc confi gured
and sized for pot ential implementation. Recent interest and external visitor pressure

has initiated the following report in this section.
4. 3 CCD Image Processing Circuitry Essentially due to academic courses, summer

Graham Nudd, Hughes Research Laboratories short courses, research efforts and general
interest in the USC Image Processing Institute, a

During the period covered by this report we brief description of the facilities developed to
have concentrated our efforts principally on date are reported herein, A bit of the design
developing the integrated circuits necessary to philosophy as well as user oriented scenarios are
demonstrate feasibility and to verify our concepts, presented for the reader to get a better feel for the
Two circuits have been selected for implementa- capabilities (and limitations) currently available
tion, each operating on a 3 x 3 array of picture at the USCIPI. For additional details on the
elements, laboratories, please consult the various operating

manuals and/or cognizant personnel respectively
The first circuit (Test Circuit I), an imple- responsible for the various aspects of the Institute.

mentation of the Sobel Operator for edge detection,
is fabricated as a n-channel surface CCD and is 6. Recent Ph.D. Dissertations
designed to operate at 10 MHz rate with accuracy
of six bits or better. The detailed design and Thi s section includes those dissertations
layout of this circuit has now been completed, and completed since the last reporting period. The
devices should be processed by April 1977. one listed here reflects an effo rt at utilizing two-

dimensional approxin-Btion theory to much more
Test Circuit II contains five separate algo- effectively develop adaptive techniques for

rithxns; low pass filtering, edge detection , unsharp efficient image approximations. The result s of
masking, binarization, and adaptive contrast the research are immediately applicable to high
enhancement, This circuit will be built on a resolution sensors in which channel bandwidth
second n-channel test chip, and we hope to have does not permit transmission of the Nyquist
devices processed by mid*year. We anticipate resolution everywhere. By on-board variable
that this chip will be approximately 190 mil x knot sampli ng adaptive approximations to the high
190 mil, and if there is sufficient area, we will resolution image are obtained with low dynamic
include other test cir cuits on the same chip. The range coefficients. In addition the knot (or
exact space available for other circuits will not be sample) density provides a valuable feature for
known until a detailed layout has been completed in pot ential on-board segmentation and higher level
the next month or so. decision processes,

Both circuit s a re analog implementations 7. Recent Institute Personnel Publications
which perform arithmetic functions, such as the
addition , intensity weightings, and the absolute This section lists the publications, in the
value operation required in the Sobel, at rates open literature by USCIPI personnel. These
equivalent to 200 MHz , Further, the relatively papers have either appeared, been accepted, or
small size of these circuits offer the possibility of have been submitted for publication in the past
highly parallel operations, six months. 21 such papers are listed.
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Parameter Reduction = 5.24:1 MSE = 1, 2%
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